Get access

Pressure-Dependent Effect of Hydrogen Adsorption on Structural and Electronic Properties of Pt/γ-Al2O3 Nanoparticles



Understanding the interaction of hydrogen with subnanometer platinum nanoparticles (NPs) under industrially relevant conditions is of great importance to heterogeneous catalysis. In this work, we investigate the pressure-dependent changes in hydrogen coverage on size- and shape-selected Pt/γ-Al2O3 NPs by in situ X-ray absorption near-edge structure (XANES) analysis. Difference XANES calculations revealed an increase in the H/Pt ratio from 1.9 to 2.5 upon increasing the hydrogen pressure from 1 to 21 bar at room temperature (1 bar=100 kPa). In addition, extended X-ray absorption fine structure measurements of the local geometrical structure showed changes in Pt[BOND]Pt bond length and coordination number, revealing a morphological transformation in the NPs from a 2 D to a 3 D shape under increasing H2 pressure at room temperature. Such shape evolution leads to a decrease in the NP–support contact area and is thus expected to affect the NP stability against coarsening.