Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology



We report on the optimization of an artificial imine reductase based on the biotin-streptavidin technology. With the aim of rapidly generating chemical diversity, a novel strategy for the formation and evaluation of biotinylated complexes is disclosed. Tethering the biotin-anchor to the Cp* moiety leaves three free coordination sites on a d6 metal for the introduction of chemical diversity by coordination of a variety of ligands. To test the concept, 34 bidentate ligands were screened and a selection of the 6 best was tested in the presence of 21 streptavidin (Sav) isoforms for the asymmetric imine reduction by the resulting three legged piano stool complexes. Enantiopure α-amino amides were identified as promising bidentate ligands: up to 63 % ee and 190 turnovers were obtained in the formation of 1-phenyl-1,2,3,4-tetrahydroisoquinoline with [IrCp*biotin(L-ThrNH2)Cl]⊂SavWT as a catalyst.