SEARCH

SEARCH BY CITATION

Keywords:

  • energy conversion;
  • dye-sensitized solar cells;
  • light scattering;
  • nanoscale cellulose;
  • polymer electrolyte

Abstract

Nanoscale microfibrillated cellulose (NMFC) was introduced into a light-cured polymeric matrix to result in a green, cheap, and highly efficient quasi-solid electrolyte for the next-generation of bio-based dye-sensitized solar cells. The effect of NMFC on the photovoltaic parameters and performance of the resulting photo-electrochemical cells was thoroughly investigated, and a noticeable increase in both the photocurrent (due to optical phenomena) and the photovoltage (through a shielding effect on the recombination reactions) was demonstrated. Upon thorough optimization of the amount of NMFC introduced into the polymeric network, sunlight conversion efficiencies as high as 7.03 and 8.25 % were achieved at simulated light intensities of 1.0 and 0.4 sun, respectively. Furthermore and outstandingly, the addition of NMFC positively affected the long-term stability of the device, which was able to retain >95 % of its initial efficiency after 500 h of extreme aging conditions.