SEARCH

SEARCH BY CITATION

Keywords:

  • Doehlert design;
  • gill EROD activity;
  • hepatic EROD activity;
  • sperm motility

Abstract

Quantifiable responses in fish, such as induction of certain proteins, can be used as indicators of chemical contamination of waterways. In order to evaluate differences in ethoxyresorufin-O-deethylase (EROD) induction capacity of the gill and the liver and effects on organs and biomarker proteins, e.g. gill and liver EROD, hepatosomatic index (HSI), nephrosomatic index (NSI), gonadosomatic index (GSI), spiggin, vitellogenin and sperm motility were analysed in male three-spined sticklebacks (Gasterosteus aculeatus) exposed for 21 days to β-naphthoflavone (βNF) alone (Exp 1) or in combination with 17α-ethynylestradiol (EE2) (Exp 2). The sperm motility variables were studied using computer-assisted sperm analysis (CASA).

Exp 1: Gill EROD activity was significantly induced in fish exposed to ≥1.2 µg/l and hepatic EROD activity in fish exposed to ≥6 µg/l. No significant effect of ßNF on the production of spiggin or vitellogenin or on sperm variables was found.

Exp 2: A significant additative effect of EE2 + βNF was shown for gill EROD. A significant antagonistic effect of the two compounds was found on NSI where an increased EE2 concentration led to an increase in NSI while an increased concentration of βNF led to a decreased NSI. Interestingly, the results showed that exposure to intermediate concentrations of EE2 and ßNF led to a significant increase in the sperm variables. In the aquatic environment mixtures of numerous chemicals with oestrogenic activity are present, so if the capacity to induce gill EROD activity is a general property of oestrogen-acting chemicals, our findings are important. Copyright © 2010 John Wiley & Sons, Ltd.