SEARCH

SEARCH BY CITATION

Keywords:

  • amphotropic;
  • gelator;
  • hydrogen bonds;
  • liquid crystals;
  • mesogenic ligand;
  • terpyridine

Abstract

A rational synthetic strategy is developed to provide compact and simple terpyridine (terpy) mesogens that show liquid-crystallinity both as pure compounds and in organic solution (amphotropic compound). The use of a central 4-methyl-3,5-diacylaminophenyl platform equipped with two lateral aromatic rings, each bearing three appended aliphatic chains, allows connection of a 2,2′:6′,2′′-terpyridine fragment through a polar group such as an ester, amide, or flat conjugated alkyne linker. For the T12ester and T12amide scaffolds, the mesophase is best described as a lamellar phase, in which the molecules self-assemble into columnar stacks held together in layers. In the T12amide case, the additional amide link results in significant stabilization of the lamellar phase. The driving forces for the appearance of columnar ordering are the hydrogen-bonding interactions of the amide groups, which induce head-to-tail π-stacking of the terpy subunits. Replacing the polar linker by a nonpolarized but linear alkyne spacer, as in the T12ethynyl compound, provides a columnar mesophase organized in a rectangular lattice of p2gg symmetry. In this arrangement, two nondiscotic molecules arranged into dimers by hydrogen bonding and π–π stacking pile up in a head-to-tail manner to form columns. In addition, the T12amide compound proves to be an excellent gelator of cyclohexane, linear alkanes, and DMSO. The resulting robust and transparent gels are birefringent and formed by large aggregates that are readily aligned by shear-flow. TEM and freeze-fracture microscopy reveal that the gels have an original layered morphology made of fibers.

Ce travail décrit une synthèse rationnelle des tous premiers ligands mésogènes à base d′unité terpyridine et montre que les propriétés thermotropes et lyotropes de ces composés dépendent notoirement du choix du connecteur reliant l′unité terpyridine à l′unité structurante. L′utilisation de l′unité structurante 4-méthyl-3,5-diacylaminophényle équipée de deux cycles aromatiques portant 3 chaînes aliphatiques permet en effet de connecter des sous-unités 2,2′:6′,2′′-terpyridine par l′intermédiaire de groupes polaires tels qu′un ester ou une fonction amide ou encore par le biais d′une connexion apolaire linéaire comme la liaison triple. La mésophase thermotrope obtenue dans le cas des composés T12ester et T12amide est une phase lamellaire dans laquelle les molécules sont organisées par un réseau de liaisons hydrogène en colonne maintenue entre-elles par des interactions secondaires de type π-π au sein des lamelles. Les forces motrices de cette organisation ont été étudiées par spectroscopie infrarouge et par l′étude fine de la structure cristalline d′un composé parent modèle obtenu sur monocristal. L′introduction d′une fonction amide supplémentaire, par le connecteur, résulte dans la stabilisation notoire de cette organisation. Le remplacement des connecteurs polaires par une liaison triple apolaire permet d′obtenir une organisation moléculaire différente aboutissant à la formation d′une mésophase colomnaire de symétrie rectangulaire de type p2 gg. Dans cet arrangement, deux molécules, n′impliquant plus les mêmes réseaux de liaisons hydrogène et d′interactions de type π, forment des dimères qui s′empilent tête-bêche pour former des colonnes. De plus, le composé portant trois fonctions amides s′avère être un excellent gélifiant du cyclohexane, des alcanes linéaires et du diméthylsulfoxide. Les gels obtenus, robustes et transparents, sont biréfringents et constitués d′agrégats pouvant être alignés sous écoulement. Des études par microscopie électronique à transmission effectuées sur des gels dilués mais également des répliques métalliques des gels obtenus après cryofracture révèlent que la formation de ces gels provient de l′auto-organisation en solution de plans formés par juxtaposition parallèle de fibres.