A Nanoporous Reactor for Efficient Proteolysis



A nanoreactor based on mesoporous silicates is described for efficient tryptic digestion of proteins within the mesochannels. Cyano-functionalized mesoporous silicate (CNS), with an average pore diameter of 18 nm, is a good support for trypsin, with rapid in situ digestion of the model proteins, cytochrome c and myoglobin. The generated peptides were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Proteolysis by trypsin-CNS is much more efficient than in-solution digestion, which can be attributed to nanoscopic confinement and concentration enrichment of the substrate within the mesopores. Proteins at concentrations of 2 ng μL−1 were successfully identified after digestion for 20 min. A biological complex sample extracted from the cytoplasm of human liver tissue was digested by using the CNS-based reactor. Coupled with reverse-phase HPLC and MALDI-TOF MS/MS, 165 proteins were identified after standard protein data searching. This nanoreactor combines the advantages of short digestion time with retention of enzymatic activity, providing a promising way to advance the development of proteomics.