• quantum dots;
  • template synthesis;
  • transition metals;
  • viruses


One of the challenges in building superstructures based on small metal particles is producing stable interparticle separation. Herein, we present a novel assembly method based on the use of the T4 bacteriophage capsid as a scaffold for the construction of 3D monodisperse metal–particle arrays. The highly regular and symmetrical protein surface of the T4 capsid allows the site-directed adsorption and subsequent reduction of metal ions, thus permitting the growth of metal particles in situ to enable them to exist at a quantum size with a high degree of monodispersity. Both these characteristics contribute to a great improvement in the electrocatalytic activity of the patterned noble-metal particles. Organized magnetic particles as small as 2–4 nm still maintain an observable ferromagnetic behavior, which makes them promising for a variety of possible biomedical applications.