Get access

Photocontrollable Analyte-Responsive Fluorescent Probes: A Photocaged Copper-Responsive Fluorescence Turn-On Probe

Authors

  • Lin Yuan,

    1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731-888-21464
    Search for more papers by this author
  • Prof. Weiying Lin,

    Corresponding author
    1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731-888-21464
    • State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731-888-21464
    Search for more papers by this author
  • Zengmei Cao,

    1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731-888-21464
    Search for more papers by this author
  • Lingliang Long,

    1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731-888-21464
    Search for more papers by this author
  • Jizeng Song

    1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (P. R. China), Fax: (+86) 731-888-21464
    Search for more papers by this author

Abstract

Analyte-responsive fluorescent probes are valuable chemical tools for dissecting complex living systems. However, the major shortcoming of fluorescent probes is that once they enter the cells, control over them is basically lost. It is critical to regulate fluorescent probes in a spatial and temporal manner, as functions of biomolecules are spatiotemporal. On the other hand, light can be manipulated in time and in the application site, so the photocaging technique allows researchers to control the biomolecules of interest in a temporal and spatial fashion. Herein, we propose for the first time the combination of the merits of sensing and photocaging technologies, which may afford the caging version of analyte-responsive fluorescent probes, referred to as photocontrollable analyte-responsive fluorescent probes (PCAFPs). These “smart” fluorescent probes apparently have the intrinsic advantage of spatiotemporal control when compared to traditional fluorescent probes, as the “sensing activity” of PCAFPs is photocontrollable. This should enable biologists to interrogate complex biological systems in a spatial and temporal manner with an innovative chemical tool. In this work, for proof of concept, we report the rational design, synthesis, photocontrollable sensing in solution and in living cells, and mechanistic studies of a molecular prototype of PCAFP for copper as the first paradigm of this new class of smart fluorescent probes. We believe that PCAFPs represent a substantial breakthrough in the sensing and photocaging fields, and that the general concept of PCAFPs should be broadly applicable for a wide variety of biologically relevant species.

Get access to the full text of this article

Ancillary