Photoactive RuII–Polypyridyl Complexes that Display Sequence Selectivity and High-Affinity Binding to Duplex DNA through Groove Binding



The duplex-DNA binding properties of a nonintercalating polypyridyl ruthenium(II) complex that incorporates a linear extended ligand with a catechol moiety has been probed with a variety of photo- and biophysical techniques. These studies reveal that the complex groove binds to DNA sequences biphasically, and displays binding constants equivalent to those of high-affinity metallointercalators. The complex also displays preferential binding to AT-rich sequences. Changes in the structure of the coordinated catechol ligand and the incorporation of intercalating ancillary ligands into the complex were found to modulate both the optical-binding response and binding parameters of the system, which indicates that the catechol moiety plays a crucial role in the observed enhancement to binding affinities.