Facile Preparation of Carbon Nanotube/Poly(ethyl 2-cyanoacrylate) Composite Electrode by Water-Vapor-Initiated Polymerization for Enhanced Amperometric Detection

Authors


Abstract

A carbon nanotube/poly(ethyl 2-cyanoacrylate) (CNT/PECA) composite electrode was developed for enhanced amperometric detection. The composite electrode was fabricated on the basis of water-vapor-initiated polymerization of a mixture of CNTs and ethyl 2-cyanoacrylate in the bore of a piece of fused silica capillary. The morphology and structure of the composite were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. The results indicate that the CNTs were well dispersed and embedded throughout the PECA matrix to form an interconnected CNT network. The analytical performance of this unique CNT-based detector has been demonstrated by separating and detecting six flavones in combination with capillary electrophoresis. The advantages of the CNT/PECA composite detector include lower operating potential, higher sensitivity, low expense of fabrication, satisfactory resistance to surface fouling, and enhanced stability; these properties indicate great promise for a wide range of applications.

Ancillary