Towards the Synthesis of Massadine: A Unified Strategy for the Stereoselective Synthesis of the Carbocyclic C,D-Ring Subunit



Massadine is a hexacyclic marine natural product, which belongs to the family of pyrrole–imidazole alkaloids. Herein, we describe a unified approach to the C,D-ring subunit of this sponge metabolite based on the exploitation of a norbornene scaffold for the stereocontrolled construction of massadine’s carbon skeleton. Highlights of the sequence presented include the application of a stereospecific norbornyl rearrangement for facile introduction of an oxygen at the C7-position within the norbornene nucleus, a highly regioselective and end group differentiating ozonolytic scission of a C[BOND]C double bond, and an oxidative decarboxylation reaction for the installation of the hindered secondary C2-alcohol function. Furthermore, the iterative assembly of the two guanidine entities as well as the implementation of the spirocyclic junction between the C- and the D-rings are described. Collectively, these key transformations permit an entry to an appropriately functionalized carbon framework, which will serve as a starting point for our efforts toward the completion of the synthesis of massadine.