Three-Dimensional Porous Metal–Radical Frameworks Based on Triphenylmethyl Radicals

Authors

  • Dr. Angela Datcu,

    1. Departament de Nanociència Molecular i Materials Orgànics, Institut de Ciència de Materials de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain)
    2. Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) ICMAB-CSIC, 08193 Bellaterra (Spain)
    Search for more papers by this author
  • Dr. Nans Roques,

    1. Departament de Nanociència Molecular i Materials Orgànics, Institut de Ciència de Materials de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain)
    2. CNRS; LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse (France)
    3. Université de Toulouse; UPS, INPT, LCC, 31077 Toulouse (France)
    Search for more papers by this author
  • Dr. Véronique Jubera,

    1. CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Dr. A. Schweitzer, Pessac, 33608 (France)
    Search for more papers by this author
  • Dr. Daniel Maspoch,

    1. CIN-2 (ICN-CSIC), Catalan Institute of Nanotechnology, Campus UAB, Bellaterra (Spain)
    2. Institució Catalana de Recerca i Estudis Avancats (ICREA), 08100 Barcelona (Spain)
    Search for more papers by this author
  • Dr. Xavier Fontrodona,

    1. Serveis Tecnics de Recerca, Universitat de Girona, Edifici Jaume Casademont (Porta E), Pic de Peguera, 15 (La Creueta), 17003 Girona (Spain)
    Search for more papers by this author
  • Dr. Klaus Wurst,

    1. Institut für Allgemeine Anorganische und Theoretische Chemie, Universitat Innsbruck, Innrain 52a, Innsbruck (Austria)
    Search for more papers by this author
  • Dr. Inhar Imaz,

    1. CIN-2 (ICN-CSIC), Catalan Institute of Nanotechnology, Campus UAB, Bellaterra (Spain)
    Search for more papers by this author
  • Georges Mouchaham,

    1. CNRS; LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse (France)
    2. Université de Toulouse; UPS, INPT, LCC, 31077 Toulouse (France)
    Search for more papers by this author
  • Dr. Jean-Pascal Sutter,

    Corresponding author
    1. CNRS; LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse (France)
    2. Université de Toulouse; UPS, INPT, LCC, 31077 Toulouse (France)
    • CNRS; LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse (France)
    Search for more papers by this author
  • Prof. Concepció Rovira,

    1. Departament de Nanociència Molecular i Materials Orgànics, Institut de Ciència de Materials de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain)
    2. Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) ICMAB-CSIC, 08193 Bellaterra (Spain)
    Search for more papers by this author
  • Prof. Jaume Veciana

    Corresponding author
    1. Departament de Nanociència Molecular i Materials Orgànics, Institut de Ciència de Materials de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain)
    2. Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) ICMAB-CSIC, 08193 Bellaterra (Spain)
    • Departament de Nanociència Molecular i Materials Orgànics, Institut de Ciència de Materials de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain)
    Search for more papers by this author

Abstract

Lanthanide coordination polymers {[Ln(PTMTC)(EtOH)2H2O]x H2O, y EtOH} [Ln=Tb (1), Gd (2), and Eu (3)] and {[Ln(αH[BOND]PTMTC)(EtOH)2H2O]x H2O, y EtOH} [Ln=Tb (1′), Gd (2′), and Eu (3′)] have been prepared by reacting LnIII ions with tricarboxylate-perchlorotriphenylmethyl/methane ligands that have a radical (PTMTC3−) or closed-shell (αH[BOND]PTMTC3−) character, respectively. X-ray diffraction analyses reveal 3D architectures that combine helical 1D channels and a fairly rare (6,3) connectivity described with the (42.8)⋅(44.62.85.104) Schäfli symbol. Such 3D architectures make these polymers porous solids upon departure of the non-coordinated guest-solvent molecules as confirmed by the XRD structure of the guest-free [Tb(PTMTC)(EtOH)2H2O] and [Tb(αH[BOND]PTMTC)(EtOH)2H2O] materials. Accessible voids represent 40 % of the cell volume. Metal-centered luminescence was observed in TbIII and EuIII coordination polymers 1′ and 3′, although the LnIII-ion luminescence was quenched when radical ligands were involved. The magnetic properties of all these compounds were investigated, and the nature of the {Ln–radical} (in 1 and 2) and the {radical–radical} exchange interactions (in 3) were assessed by comparing the behaviors for the radical-based coordination polymers 13 with those of the compounds with the diamagnetic ligand set. Whilst antiferromagnetic {radical–radical} interactions were found in 3, ferromagnetic {Ln–radical} interactions propagated in the 3D architectures of 1 and 2.

Ancillary