Application and Mechanistic Studies of a Water-Oxidation Catalyst in Alcohol Oxidation by Employing Oxygen-Transfer Reagents



By using a dimeric ruthenium complex in combination with tert-butyl hydrogen peroxide (TBHP) as stoichiometric oxidant, a mild and efficient protocol for the oxidation of secondary benzylic alcohols was obtained, thereby giving the corresponding ketones in high yields within 4 h. However, in the oxidation of aliphatic alcohols, the TBHP protocol suffered from low conversions owing to a competing Ru-catalyzed disproportionation of the oxidant. Gratifyingly, by switching to Oxone (2 KHSO5KHSO4K2SO4 triple salt) as stoichiometric oxidant, a more efficient and robust system was obtained that allowed for the oxidation of a wide range of aliphatic and benzylic secondary alcohols, giving the corresponding ketones in excellent yields. The mechanism for these reactions is believed to involve a high-valent RuV–oxo species. We provide support for such an intermediate by means of mechanistic studies.