SEARCH

SEARCH BY CITATION

Keywords:

  • germanium;
  • graphene;
  • microwave chemistry;
  • nanostructures;
  • zinc

Abstract

Zn2GeO4/N-doped graphene nanocomposites have been synthesized through a fast microwave-assisted route on a large scale. The resulting nanohybrids are comprised of Zn2GeO4 nanorods that are well-embedded in N-doped graphene sheets by in situ reducing and doping. Importantly, the N-doped graphene sheets serve as elastic networks to disperse and electrically wire together the Zn2GeO4 nanorods, thereby effectively relieving the volume-expansion/contraction and aggregation of the nanoparticles during charge and discharge processes. We demonstrate that an electrode that is made of the as-formed Zn2GeO4/N-doped graphene nanocomposite exhibits high capacity (1463 mAh g−1 at a current density of 100 mA g−1), good cyclability, and excellent rate capability (531 mAh g−1 at a current density of 3200 mA g−1). Its superior lithium-storage performance could be related to a synergistic effect of the unique nanostructured hybrid, in which the Zn2GeO4 nanorods are well-stabilized by the high electronic conduction and flexibility of N-doped graphene sheets. This work offers an effective strategy for the fabrication of functionalized ternary-oxide-based composites as high-performance electrode materials that involve structural conversion and transformation.