Cover Picture: Cascade Syntheses Routes to the Centrocountins (Chem. Eur. J. 7/2013)

Authors

  • Vincent Eschenbrenner-Lux,

    1. Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund (Germany)
    2. Technische Universität Dortmund, Fakultät Chemische Biologie, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
    Search for more papers by this author
  • Dr. Heiko Dückert,

    1. Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund (Germany)
    2. Technische Universität Dortmund, Fakultät Chemische Biologie, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
    Search for more papers by this author
  • Dr. Vivek Khedkar,

    1. Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund (Germany)
    Search for more papers by this author
  • Dipl.-Chem. Hanna Bruss,

    1. Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund (Germany)
    2. Technische Universität Dortmund, Fakultät Chemische Biologie, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
    Search for more papers by this author
  • Prof. Dr. Herbert Waldmann,

    Corresponding author
    1. Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund (Germany)
    2. Technische Universität Dortmund, Fakultät Chemische Biologie, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
    • Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund (Germany)
    Search for more papers by this author
  • Dr. Kamal Kumar

    Corresponding author
    1. Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund (Germany)
    2. Technische Universität Dortmund, Fakultät Chemische Biologie, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)
    • Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Str. 11, 44227 Dortmund (Germany)
    Search for more papers by this author

Abstract

original image

The longest cascade reaction sequence known to date provides natural-product-inspired and biologically active centrocountins, or tetrahydroindoloquinolizines and related molecules. K. Kumar, H. Waldmann et al. unravel mechanistic insights into this long cascade reaction sequence in their Full Paper on page 2294 ff. by isolating and characterizing various intermediates and with control experiments. The cover picture shows a natural setup as a symbolic source of inspiration. As the reaction substrates in the pool of water flow in different streams, representing different cascade reaction sequences, they are progressively transformed into different intermediates before settling as a collection of products, the tetrahydro(indolo)quinolizine molecules.

Cartoon 1.

Multiple Bond-Forming Transformations

1,2- and 1,3-dicarbonyl compounds are exceptional synthetic platforms that are particularly well adapted for multiple bond-forming transformations (MBFTs). These powerful sequences are highlighted in the Concept Article by the Rodriguez group on page 2218 ff. Domino, multicomponent, and consecutive reactions with these powerful and densely functionalized building blocks have allowed the stereoselective preparation of very diverse and complex molecular architectures with the formation of up to six chemical bonds under efficient step- and atom-economical conditions.

Thumbnail image of

Medicinal Chemistry

In their Communication on page 2232 ff. J. Keiser, G. Gasser et al. demonstrate that two easy-to-prepare chromium tricarbonyl praziquantel (PZQ) derivatives achieve an impressive antischistosomal effect (nanomolar range) on adult S. mansoni in vitro. Importantly, these compounds were shown to be safe when tested using two distinct cell lines and had remarkable selectivity for the adult stage of S. mansoni that lives in the portal and mesenteric vein system of the human host.

Thumbnail image of

Carbon Dots

A facile and general carbonization and extraction procedure to prepare a series of nitrogen-doped carbon dots (N-Cdots) with different nitrogen contents is proposed by X.-B. Yin et al. in their Full Paper on page 2276 ff. They found that Cdots exist in core–shell structures with a graphite core and a loose oxygen-containing-group shell. PL emission from the N-Cdots was observed to have nitrogen-content-dependent intensities with multicolor and two-photon upconverted properties. The merits of doped Cdots make them potential probes in optical imaging and sensing applications.

Thumbnail image of

Ancillary