SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Barron LD. Molecular light scattering and optical activity, 2nd edition. Cambridge, UK: Cambridge University Press; 2004.
  • 2
    PályiG,ZucchiC,CagliotiL, editors. Progress in biological chirality. Oxford, UK: Elsevier Science; 2004.
  • 3
    BerovaN,NakanishiK,WoodyRW, editors. Circular dichroism. Principles and applications.2nd Edition. New York: VCH; 2000.
  • 4
    Quack M. How important is parity violation for molecular and biomolecular chirality. Angew Chem Int Edit Engl 2002; 41: 46184630.
  • 5
    Zavattini E,Zavattini G,Ruoso G,Polacco E,Milotti E,Karuza M,Gastaldi U,Di Domenico G,Della Valle F,Cimino R,Carusotto S,Cantatore G,Bregant M. Experimental observation of optical rotation generated in vacuum by a magnetic field. Phys Rev Lett 2006; 96: 110406110405.
  • 6
    Djerassi C. Optical rotatory dispersion. New York: McGraw-Hill; 1960.
  • 7
    Kramers HA. The theory of absorption and refraction of X-rays. Nature (London) 1926; 117: 775778.
  • 8
    Kronig RDL. The theory of dispersion of X-rays. J Opt Soc Am 1926; 12: 547557.
  • 9
    Moscowitz A. Theoretical aspects of optical activity, Part 1: small molecules. Adv Chem Phys 1962; 4: 67112.
  • 10
    Polavarapu PL. Renaissance in chiroptical spectroscopic methods for molecular structure determination. Chem Rec 2007; 7: 125136.
  • 11
    Cramer CJ. Essentials of computational chemistry. Chichester: Wiley; 2002.
  • 12
    Tomasi J,Persico M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 1994; 94: 20272094.
  • 13
    Cramer CJ,Truhlar DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 1999; 99: 21612200.
  • 14
    Klamt A,Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2 1993; 799805.
  • 15
    Jorgensen WL,Chandrasekhar J,Madura JD,Impey RW,Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79: 926935.
  • 16
    Hess B,Kutzner C,van der Spoel D,Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 2008; 4: 435447.
  • 17
    Guo YW,Kurtan T,Krohn K,Pescitelli G,Zhang W. Assignment of the absolute configuration of zwitterionic and neutral macropodumines by means of TDDFT CD calculations. Chirality 2008; 21: 561568.
  • 18
    Sauer SPA,Packer MJ. The ab initio calculation of molecular properties other than the potential energy surface. In: BunkerPR,JensenP, editors. Computational molecular spectroscopy. London: Wiley; 2000: p 221252.
  • 19
    Ruud K,Åstrand PO,Taylor PR. An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules. J Chem Phys 2000; 112: 26682683.
  • 20
    Wiberg KB,Vaccaro PH,Cheeseman JR. Conformational effects on optical rotation. 3-Substituted 1-butenes. J Am Chem Soc 2003; 125: 18881896.
  • 21
    Åstrand PO,Ruud K. Zero-point vibrational contributions to fluorine shieldings in organic molecules. Phys Chem Chem Phys 2003; 5: 50155020.
  • 22
    Mort BC,Autschbach J. Magnitude of zero–point vibrational corrections to the optical rotation in rigid organic molecules: a time-dependent density functional study. J Phys Chem A 2005; 109: 86178623.
  • 23
    Mort BC,Autschbach J. Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging. J Am Chem Soc 2006; 128: 1006010072.
  • 24
    Mort BC,Autschbach J. Temperature dependence of optical rotation of fenchone calculated by vibrational averaging. J Phys Chem A 2006; 110: 1138111383.
  • 25
    Mort BC,Autschbach J. Temperature dependence of the optical rotation in six bicyclic organic molecules calculated by vibrational averaging. Chem Phys Chem 2007; 8: 605616.
  • 26
    Kongsted J,Pedersen TB,Jensen L,Hansen AE,Mikkelsen KV. Coupled cluster and density functional theory studies of the vibrational contribution to the optical rotation of (S)-propylene oxide. J Am Chem Soc 2006; 128: 976982.
  • 27
    Ruud K,Zanasi R. The importance of molecular vibrations: the sign change of the optical rotation of methyloxirane. Angew Chem Int Edit Engl 2005; 44: 35943596.
  • 28
    Crawford TD,Tam MC,Abrams ML. The problematic case of (S)-methylthiirane: electronic circular dichroism spectra and optical rotatory dispersion. Mol Phys 2007; 105: 26072617.
  • 29
    Grimme S. Calculation of the Electronic Spectra of Large Molecules. In: LipkowitzKB,LarterR,CundariTR, editors. Reviews in Computational Chemistry, Vol 20, Hoboken: Wiley; 2004: p 153218.
  • 30
    Neugebauer J,Baerends EJ,Nooijen M,Autschbach J. Importance of vibronic effects on the circular dichroism spectrum of dimethyloxirane. J Chem Phys 2005; 122: 2343054307.
  • 31
    Lin N,Santoro F,Zhao X,Rizzo A,Barone V. Vibronically resolved electronic circular dichroism spectra of (R)-(+)-3-methylcyclopentanone: a theoretical study. J Phys Chem A 2008; 112: 1240112411.
  • 32
    Bayley PM,Nielsen EB,Schellmann JA. The rotatory properties of molecules containing two peptide groups: theory. J Phys Chem 1969; 73: 228243.
  • 33
    Schellman JA. Circular dichroism and optical rotation. Chem Rev 1975; 75: 323331.
  • 34
    Hättig C,Weigend F. CC2 excitation energy calculations on large molecules using the resolution of the identitiy approximation. J Chem Phys 2000; 113: 51545161.
  • 35
    Kongsted J,Pedersen TB,Strange M,Osted A,Hansen AE,Mikkelsen KV,Pawlowski F,Jorgensen P,Hattig C. Coupled cluster calculations of the optical rotation of S-propylene oxide in gas phase and solution. Chem Phys Lett 2005; 401: 385392.
  • 36
    Crawford TD,King RA, Locally correlated equation–of–motion coupled cluster theory for the excited states of large molecules. Chem Phys Lett 2002; 366: 611622.
  • 37
    Crawford TD,Owens LS,Tam MC,Schreiner PR,Koch H. Ab initio calculation of optical rotation in (P)-(+)-[4]triangulane. J Am Chem Soc 2005; 127: 13681369.
  • 38
    Schuchardt KL,Didier BT,Elsethagen T,Sun L,Gurumoorthi V,Chase J,Li J,Windus TL. Basis set exchange: a community database for computational sciences. J Chem Inf Model 2007; 47: 10451052.
  • 39
    Bringmann G,Bruhn T,Maksimenka K,Hemberger Y. The assignment of absolute stereostructures through quantum chemical circular dichroism calculations. Eur J Org Chem 2009; 27172727.
  • 40
    Stephens PJ,Devlin FJ,Cheeseman JR,Frisch MJ. Calculation of optical rotation using density functional theory. J Phys Chem A 2001; 105: 53565371.
  • 41
    Grimme S. Calculation of frequency dependent optical rotation using density functional response theory. Chem Phys Lett 2001; 339: 380388.
  • 42
    Autschbach J,Ziegler T,Patchkovskii S,van Gisbergen SJA,Baerends EJ. Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules. J Chem Phys 2002; 117: 581592.
  • 43
    Stephens PJ,McCann DM,Cheeseman JR,Frisch MJ. Determination of absolute configurations of chiral molecules using ab-initio time-dependent density functional theory calculations of optical rotation: how reliable are absolute configurations obtained for molecules with small rotations. Chirality 2005; 17: S52S64.
  • 44
    McCann DM,Stephens PJ. Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: chiral alkenes. J Org Chem 2006; 71: 60746098.
  • 45
    Crawford TD,Stephens PJ. Comparison of time-dependent density-functional theory and coupled cluster theory for the calculation of the optical rotations of chiral molecules. J Phys Chem A 2008; 112: 13391345.
  • 46
    Mennucci B,Tomasi J,Cammi R,Cheeseman JR,Frisch MJ,Devlin FJ,Gabriel S,Stephens PJ. Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 2002; 106: 61026113.
  • 47
    Kundrat MD,Autschbach J. Time dependent density functional theory modeling of chiroptical properties of small amino acids in solution. J Phys Chem A 2006; 110: 41154123.
  • 48
    Kundrat MD,Autschbach J. Time dependent density functional theory modeling of optical rotation and optical rotatory dispersion of aromatic amino acids in solution. J Phys Chem A 2006; 110: 1290812917.
  • 49
    Mukhopadhyay P,Zuber G,Goldsmith MR,Wipf P,Beratan DN. Solvent effect on optical rotation: a case study of methyloxirane in water. Chem Phys Chem 2006; 7: 24832486.
  • 50
    Kundrat MD,Autschbach J. Modeling of the chiroptical response of chiral amino acids in solution using explicit solvation and molecular dynamics. J Chem Theor Comput 2009; 5: 10511060.
  • 51
    Kundrat MD,Autschbach J. Ab-initio and density functional theory modeling of the chiroptical response of glycine in solution using explicit solvation and molecular dynamics. J Chem Theor Comput 2008; 4: 19021914.
  • 52
    Autschbach J,Jensen L,Schatz GC,Tse YCE,Krykunov M. Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules. J Phys Chem A 2006; 110: 24612473.
  • 53
    Giorgio E,Viglione RG,Zanasi R,Rosini C. Ab initio calculation of optical rotatory dispersion (ORD) curves: a simple and reliable approach to the assignment of the molecular absolute configuration. J Am Chem Soc 2004; 126: 1296812976.
  • 54
    Bour P,Tam CN,Shaharuzzaman M,Chickos JS,Keiderling TA. Vibrational optical activity study of trans-succinic-d2 anhydride. J Phys Chem 1996; 100: 1504115048.
  • 55
    Brown A,Kemp CM,Mason SF. Electronic absorption, polarized excitation, and circular dichroism spectra of [5]-helicene (Dibenzo[c,g]phenanthrene). J Chem Soc A 1971; 751755.
  • 56
    Condon EU. Theories of optical rotatory power. Rev Mod Phys 1937; 9: 432457.
  • 57
    Kauzmann W. Quantum Chemistry. New York: Academic Press; 1957.
  • 58
    Caldwell DJ,Eyring H. The theory of optical activity. New York: Wiley-Interscience; 1971.
  • 59
    Snatzke G. Circular dichroism: an introduction. In: BerovaN,NakanishiK,WoodyRW, editors. Circular dichroism: principles and applications,2nd Ed. New York: Wiley-VCH; 2000, p 135.
  • 60
    Kuroda R,Saito Y. Circular dichroism of inorganic complexes: interpretation and applications. In: BerovaN,NakanishiK,WoodyRW, editors. Circular dichroism: principles and applications,Second Edition. New York: VCH; 2000, p 563599.
  • 61
    Autschbach J. “Optical rotation and ellipticity” from The Wolfram Demonstrations Project. Avalable at: http://demonstrations.wolfram.com/OpticalRotationAndEllipticity/. Accessed: September 2009.
  • 62
    Autschbach J. “Circular and elliptic polarization of light waves” from The Wolfram Demonstrations Project, Available at: http://demonstrations.wolfram.com/CircularAndEllipticPolarizationOfLightWaves/. Accessed: September 2009.
  • 63
    Amos RD. Electric and magnetic properties of CO. HF. HCI. and CH3F. Chem Phys Lett 1982; 87: 2327.
  • 64
    Polavarapu PL. Optical rotation: recent advances in determining the absolute configuration. Chirality 2002; 14: 768781.
  • 65
    Cheeseman JR,Frisch MJ,Devlin FJ,Stephens PJ. Hartree-Fock and density functional theory ab initio calculation of optical rotations using GIAOs: basis set dependence. J Phys Chem A 2000; 104: 10391046.
  • 66
    Autschbach J. Computation of Optical Rotation using Time-Dependent Density Functional Theory. Comp Lett 2007; 3: 131150.
  • 67
    Rudolph M,Autschbach J. Fast generation of nonresonant and resonant Optical Rotatory Dispersion curves with the help of Circular Dichroism calculations and Kramers-Kronig transformations. Chirality 2008; 20: 9951008.
  • 68
    Krykunov M,Kundrat MD,Autschbach J. Calculation of CD spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory. J Chem Phys 2006; 125: 194110113.
  • 69
    Byron FW,Fuller RW. The mathematics of classical and quantum physics. Reading, MA: Addison-Wesley; 1969.
  • 70
    Norman P,Bishop DM,Jensen HJA,Oddershede J. Near–resonant absorption in the time-dependent self–consistent field and multiconfigurational self–consistent field approximations. J Chem Phys 2001; 115: 1032310334.
  • 71
    Jensen L,Autschbach J,Schatz GC. Finite lifetime effects on the polarizability within time-dependent density functional theory. J Chem Phys 2005; 122: 224115224111.
  • 72
    Polavarapu P. Kramers–Kronig transformation for optical rotatory dispersion studies. J Phys Chem A 2005; 109: 70137023.
  • 73
    Polavarapu PL. Protocols for the analysis of theoretical optical rotations. Chirality 2006; 18: 348356.
  • 74
    Kundrat MD,Autschbach J. Computational modeling of the optical rotation of amino acids: taking a new look at an old rule for the pH dependence of the optical rotation. J Am Chem Soc 2008; 130: 44044414.
  • 75
    Wiberg KB,Wang YG,Wilson SM,Vaccaro PH,Cheeseman JR. Sum-over-states calculation of the specific rotations of some substituted oxiranes, chloropropionitrile, ethane, and norbornenone. JPhys Chem A 2006; 110: 1399514002.
  • 76
    McWeeny R. Methods of molecular quantum mechanics, 2nd edition London: Academic Press; 1992.
  • 77
    Bak KD,Hansen AE,Ruud K,Helgaker T,Olsen J,Jørgensen P. Ab initio calculation of electric circular dichroism for trans-cyclooctene uning London atomic orbitals. Theor Chim Acta 1995; 90: 441458.
  • 78
    Krykunov M,Autschbach J. Calculation of optical rotation with time–periodic magnetic field–dependent basis functions in approximate time-dependent density functional theory. J Chem Phys 2005; 123: 114103114110.
  • 79
    Pedersen TB,Koch H,Boman L,Sánchez de Merás AMJ. Origin invariant calculation of optical rotation without recourse to London orbitals. Chem Phys Lett 2004; 393: 319326.
  • 80
    Grimme S,Furche F,Ahlrichs R. An improved method for density functional calculations of the frequency-dependent optical rotation. Chem Phys Lett 2002; 361: 321328.
  • 81
    Amos RD. Molecular property derivatives. Adv Chem Phys 1987; 67: 99153.
  • 82
    Rauk A,Yang D. Vibrational circular dichroism and infrared spectra of 2–methyloxirane and trans-2,3–dimethyloxirane: ab initio vibronic coupling theory with the 6–31G*(0.3) basis set. J Phys Chem 1992; 96: 437446.
  • 83
    Craig DP,Thirunamachandran T. A theory of vibrational circular dichroism in terms of vibronic interactions. Mol Phys 1978; 35: 825840.
  • 84
    Stephens PJ. Theory of vibrational circular dichroism. J Phys Chem 1985; 89: 748752.
  • 85
    Nafie LA,Freedman TB. Vibronic coupling theory of infrared vibrational transitions. J Chem Phys 1983; 78: 71087116.
  • 86
    Autschbach J,Ziegler T. Double perturbation theory: a powerful tool in computational coordination chemistry. Coord Chem Rev 2003; 238/239: 83126.
  • 87
    Buckingham AD,Fowler PW,Galwas PA. Velocity-dependent property surfaces and the theory of vibrational circular dichroism. Chem Phys 1987; 112: 114.
  • 88
    Yang D. Implementation of ab initio vibronic coupling theory to interpret vibrational dichroism spectra, Ph.D. Thesis. University of Calgary; Calgary, 1992.
  • 89
    Barron LD. Chemistry—compliments from Lord Kelvin. Nature 2007; 446: 505506.
  • 90
    Barron LD,Zhu FJ,Hecht L,Tranter GE,Isaacs NW. Raman optical activity: an incisive probe of molecular chirality and biomolecular structure. J Mol Struct 2007; 834: 716.
  • 91
    Bell AF,Hecht L,Barron LD. Vibrational Raman optical activity of DNA and RNA. J Am Chem Soc 1998; 120: 58205821.
  • 92
    Haesler J,Schindelholz I,Riguet E,Bochet CG,Hug W. Absolute configuration of chirally deuterated neopentane. Nature 2007; 446: 526529.
  • 93
    Jensen L,Autschbach J,Krykunov M,Schatz GC. Resonance vibrational Raman optical activity: a time-dependent density functional theory approach. J Chem Phys 2007; 127: 134101134111.
  • 94
    Parr RG,Yang W. Density functional theory of atoms and molecules. New York: Oxford University Press; 1989.
  • 95
    Ziegler T. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 1991; 91: 651667.
  • 96
    Gross EKU,Dobson JF,Petersilka M. Density functional theory of time-dependent phenomena. Top Curr Chem 1996; 181: 81172.
  • 97
    DobsonJF,VignaleG,DasMP, editors. Electronic density functional theory. Recent progress and new directions. New York: Plenum Press; 1998.
  • 98
    Elliott P,Burke K,Furche F. Excited states from time-dependent density functional theory. In: LipkowitzKB,CundariTR, editors. Reviews of computational chemistry, Hoboken, NJ: Wiley; 2009.
  • 99
    Autschbach J. Spectroscopic properties obtained from time-dependent density functional theory (TD-DFT). In: Encyclopedia of Inorganic Chemistry, Wiley-VCH; in press.
  • 100
    Tozer DJ,Handy NC. Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J Chem Phys 1998; 109: 1018010189.
  • 101
    Grüning M,Gritsenko OV,van Gisbergen SJA,Baerends EJ. Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region. J Chem Phys 2001; 114: 652660.
  • 102
    Schipper PRT,Gritsenko OV,van Gisbergen SJA,Baerends EJ. Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials. J Chem Phys 2000; 112: 13441352.
  • 103
    Gross EKU,Burke K. Basics. In: MarquesMAL,UllrichCA,NogueiraF,RubioA,BurkeK,GrossEKU, editors.Time-dependent density functional theory, Volume 706 of Lecture Notes in Physics, Berlin: Springer; 2006: p 116.
  • 104
    Autschbach J. Density Functional Theory applied to calculating optical and spectroscopic properties of metal complexes: NMR and Optical Activity. Coord Chem Rev 2007; 251: 17961821.
  • 105
    Furche F,Ahlrichs R,Wachsmann C,Weber E,Sobanski A,Vögtle F,Grimme S. Circular dichroism of helicenes investigated by time-dependent density functional theory. J Am Chem Soc 2000; 122: 17171724.
  • 106
    Autschbach J,Ziegler T,van Gisbergen SJA,Baerends EJ. Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules. J Chem Phys 2002; 116: 69306940.
  • 107
    Autschbach J,Ziegler T. Calculating electric and magnetic properties from time dependent density functional perturbation theory. J Chem Phys 2002; 116: 891896.
  • 108
    Ruud K,Helgaker T. Optical rotation studied by density-functional and coupled-cluster methods. Chem Phys Lett 2002; 352: 533539.
  • 109
    Autschbach J,Jorge FE,Ziegler T. Density functional calculations on electronic circular dichroism spectra of chiral cobalt(III) complexes. Inorg Chem 2003; 42: 28672877.
  • 110
    Diedrich C,Grimme S. Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A 2003; 107: 25242539.
  • 111
    Gorelsky SI,Lever ABP. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J Organomet Chem 2001; 635: 187196.
  • 112
    Nafie LA. Velocity-gauge formalism in the theory of vibrational circular dichroism and infrared absorption. J Chem Phys 1992; 96: 56875702.
  • 113
    Yang D,Rauk A. Vibrational circular dichroism intensities by ab initio second-order Møller–Plesset vibronic coupling theory. J Chem Phys 1994; 100: 79958002.
  • 114
    Bour P,Keiderling TA. Ab initio simulations of the vibrational circular dichroism of coupled peptides. J Am Chem Soc 1993; 115: 96029607.
  • 115
    Tam CN,Bour P,Keiderling TA. Vibrational optical activity of (3S,6S)-3,6-dimethyl-1,4-dioxane-2,5-dione. J Am Chem Soc 1996; 118: 1028510293.
  • 116
    Devlin FJ,Stephens PJ,Cheeseman JR,Frisch MJ. Prediction of vibrational circular dichroism spectra using density functional theory. J Am Chem Soc 1996; 118: 63276328.
  • 117
    Ruud K,Helgaker T,Bour P. Gauge-origin independent density-functional theory calculations of vibrational Raman optical activity. J Phys Chem A 2002; 106: 74487455.
  • 118
    Polavarapu P. The absolute configuration of bromochlorofluoromethane. Angew Chem Int Ed Engl 2002; 41: 45444546.
  • 119
    Reiher M,Liegeois V,Ruud K. Basis set and density functional dependence of vibrational Raman optical activity calculations. J Phys Chem A 2005; 109: 75677574.
  • 120
    Polavarapu PL. Ab initio vibrational Raman and Raman optical activity spectra. J Phys Chem 1990; 94: 81068112.
  • 121
    Polavarapu PL,Hecht L,Barron LD. Vibrational Raman optical activity in substituted oxiranes. J Phys Chem 1993; 97: 17931799.
  • 122
    Helgaker T,Ruud K,Bak KL,Jørgensen P,Olsen J. Vibration Raman optical activity calculations using London atomic orbitals. Faraday Discuss 1994; 99: 165180.
  • 123
    Casida ME. Time-dependent density functional response theory for molecules. In: ChongDP, editor. Recent advances in density functional methods, volume 1. Singapore: World Scientific; 1995: p 155192.
  • 124
    Neugebauer J,Gritsenko O,Baerends EJ. Assessment of a simple correction for the long-range charge-transfer problem in time-dependent density-functional theory. J Chem Phys 2006; 124: 214102.
  • 125
    Gritsenko O,Baerends EJ. Asymptotic correction of the exchange–correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. J Chem Phys 2004; 121: 655660.
  • 126
    Peach MJG,Benfield P,Helgaker T,Tozer DJ. Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 2008; 128: 044118.
  • 127
    Savin A. On degeneracy, neardegenaracy and density functional theory. In: SeminarioJM, editor. Recent Developments and Applications of Modern Density Functional Theory. Amsterdam: Elsevier; 1996: p 327.
  • 128
    Tawada Y,Tsuneda T,Yanagisawa S,Yanai T,Hirao K. A long-range-corrected time-dependent density functional theory. J Chem Phys 2004; 120: 84258433.
  • 129
    Yanai T,Tew DP,Handy NC. A new hybrid exchangecorrelation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 2004; 393: 5157.
  • 130
    Livshits E,Baer R. A well-tempered density functional theory of electrons in molecules. Phys Chem Chem Phys 2007; 9: 29322941.
  • 131
    Jaramillo J,Scuseria GE,Ernzerhof M. Local hybrid functionals. J Chem Phys 2003; 118: 10681073.
  • 132
    Giesbertz KJH,Baerends EJ. Failure of time-dependent density functional theory for excited state surfaces in case of homolytic bond dissociation. Chem Phys Lett 2008; 461: 338342.
  • 133
    Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Montgomery JAJr,Vreven T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J,Ishida M,Nakajima T,Honda Y,Kitao O,Nakai H,Klene M,Li X,Knox JE,Hratchian HP,Cross JB,Bakken V,Adamo C,Jaramillo J,Gomperts R,Stratmann RE,Yazyev O,Austin AJ,Cammi R,Pomelli C,Ochterski JW,Ayala PY,Morokuma K,Voth GA,Salvador P,Dannenberg JJ,Zakrzewski VG,Dapprich S,Daniels AD,Strain MC,Farkas O,Malick DK,Rabuck AD,Raghavachari K,Foresman JB,Ortiz JV,Cui Q,Baboul AG,Clifford S,Cioslowski J,Stefanov BB,Liu G,Liashenko A,Piskorz P,Komaromi I,Martin RL,Fox DJ,Keith T,Al-Laham MA,Peng CY,Nanayakkara A,Challacombe M,Gill PMW,Johnson B,Chen W,Wong MW,Gonzalez C,Pople JA. Gaussian 03. Wallingford, CT: Gaussian, Inc; 2004. Available at: www.gaussian.com. Accessed: September 2009.
  • 134
    Dalton, a molecular electronic structure program, Release 2.0, 2005. Available at: http://www.kjemi.uio.no/software/dalton/dalton.html. Accessed: September 2009.
  • 135
    Turbomole program package. Available at: http://www.turbomole.com. Accessed: September 2009.
  • 136
    Baerends EJ,Autschbach J,Bérces A,Bickelhaupt FM,Bo C,Boerrigter PM,Cavallo L,Chong DP,Deng L,Dickson RM,Ellis DE,van Faassen M,Fan L,Fischer TH,Fonseca Guerra C,van Gisbergen SJA,Groeneveld JA,Gritsenko OV,Grüning M,Harris FE,van den Hoek P,Jacob CR,Jacobsen H,Jensen L,van Kessel G,Kootstra F,van Lenthe E,McCormack DA,Michalak A,Neugebauer J,Osinga VP,Patchkovskii S,Philipsen PHT,Post D,Pye CC,Ravenek W,Ros P,Schipper PRT,Schreckenbach G,Snijders JG,Solà M,Swart M,Swerhone D,te Velde G,Vernooijs P,Versluis L,Visscher L,Visser O,Wang F,Wesolowski TA,van Wezenbeek E,Wiesenekker G,Wolff S,Woo T,Yakovlev A,Ziegler T. Amsterdam Density Functional, SCM. Theoretical Chemistry. Amsterdam, The Netherlands: Vrije Universiteit; Available at: http://www.scm.com. Accessed: September 2009.
  • 137
    Neese F,ORCA program. Available at: http://www.thch.uni-bonn.de/tc/orca. Accessed: September 2009.
  • 138
    Psi-3 program. Available at: http://www.psicode.org/. Accessed: September 2009.
  • 139
    Apra E,Windus TL,Straatsma TP,Bylaska EJ,de Jong W,Kowalski K,Hirata S,Valiev M,Hackler MT,Zhao Y,Harrison RJ,Dupuis M,Smith DMA,Nieplocha J,Tipparaju V,Krishnan M,Auer AA,Brown E,Cisneros G,Fann GI,Fruchtl H,Garza J,Hirao K,Kendall R,Nichols JA,Tsemekhman K,Wolinski K,Anchell J,Bernholdt D,Borowski P,Clark T,Clerc D,Dachsel H,Deegan M,Dyall K,Elwood D,Glendening E,Gutowski M,Hess A,Jaffe J,Johnson B,Ju J,Kobayashi R,Kutteh R,Lin Z,Littlefield R,Long X,Meng B,Nakajima T,Niu S,Pollack L,Rosing M,Sandrone G,Stave M,Taylor H,Thomas G,van Lenthe J,Wong A,Zhang Z,Chem NW. A Computational Chemistry Package for Parallel Computers, Version 5.0. Richland, Washington: Pacific Northwest National Laboratory; 2006.
  • 140
    Carnell M,Grimme S,Peyerimhoff SD. Theoretical study of the circular dichroism and VUV spectra of trans-2,3-dimethyloxirane. Chem Phys 1994; 179: 385394.
  • 141
    Pickard ST,Smith HE,Polavarapu PL,Black TM,Rauk A,Yang D. Synthesis, experimental, and ab initio theoretical vibrational circular dichroism, and absolute configurations of substituted oxiranes. J Am Chem Soc 1992; 114: 68506857.
  • 142
    Sinha P,Boesch SE,Gu C,Wheeler RA,Wilson AK. Harmonic vibrational frequencies: scaling factors for HF. B3LYP. and MP2 methods in combination with correlation consistent basis sets. J Phys Chem A 2004; 108: 92139217.
  • 143
    Nicu VP,Autschbach J,Baerends EJ. Enhancement of IR and VCD intensities due to charge transfer. Phys Chem Chem Phys 2009; 11: 15261538.
  • 144
    Grimme S,Peyerimhoff S. Theoretical study of the structures and racemization barriers of [n]helicenes (n = 3–6, 8). Chem Phys 1996; 204: 411417.
  • 145
    Pulm F,Schramm J,Hormes J,Grimme S,Peyerimhoff S. Theoretical and experimental investigations of the electronic circular dichroism and absorption spectra of bicyclic ketones. Chem Phys 1997; 224: 143155.
  • 146
    Polavarapu PL,Chakraborty DK. Absolute stereochemistry of chiral molecules from ab initio theoretical and experimental molecular optical rotations. J Am Chem Soc 1998; 120: 61606164.
  • 147
    Polavarapu PL,Zhao C. A comparison of ab initio optical rotations obtained with static and dynamic methods. Chem Phys Lett 1998; 296: 105110.
  • 148
    Polavarapu PL,Zhao C. Ab initio predictions of anomalous optical rotatory dispersion. J Am Chem Soc 1999; 121: 246247.
  • 149
    Kondru RK,Wipf P,Beratan DN. Atomic contributions to the optical rotation angle as a quantitative probe of molecular chirality. Science 1998; 282: 22472250.
  • 150
    Kondru RK,Wipf P,Beratan DN. Theory–assisted determination of absolute stereochemistry for complex natural products via computation of molar rotation angles. J Am Chem Soc 1998; 120: 22042205.
  • 151
    Mukhopadhyay P,Wipf P,Beratan DN. Optical Signatures of Molecular Dissymmetry: combining Theory with Experiments To Address Stereochemical Puzzles. Acc Chem Res 2009; 42: 809819.
  • 152
    Hansen AE,Bouman TD. Natural chiroptical spectroscopy: theory and computations. Adv Chem Phys 1980; 44: 545644.
  • 153
    Hansen AE,Voigt B,Rettrup S. Large-scale RPA calculations of chiroptical properties of organic molecules: program RPAC. Int J Quantum Chem 1983; 23: 595611.
  • 154
    Amos RD,Rice JE. Implementation of analytic derivative methods in quantum chemistry. Comp Phys Rep 1989; 10: 147187.
  • 155
    Polavarapu PL,Bose PK. Ab initio localized molecular orbital predictions of vibrational circular dichroism: trans-2,3-dideuterooxirane. JChem Phys 1990; 93: 75247525.
  • 156
    Pecul M,Ruud K. The ab initio calculation of optical rotation and electronic circular dichroism. In: Advances In Quantum Chemistry, volume 50. San Diego: Elsevier; 2005. p 185212.
  • 157
    Crawford TD. Ab initio calculation of molecular chiroptical properties. Theor Chem Acc 2006; 115: 227245.
  • 158
    Bauernschmitt R,Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 1996; 256: 454464.
  • 159
    Goerigk L,Grimme S. Calculation of electronic circular dichroism spectra with time-dependent double-hybrid density functional theory. J Phys Chem A 2009; 113: 767776.
  • 160
    Berova N,Di Bari L,Pescitelli G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem Soc Rev 2007; 36: 914931.
  • 161
    Mori T,Inoue Y,Grimme S. Experimental and theoretical study of the CD spectra and conformational properties of axially chiral 2,2′-, 3,3;-, and 4,4′-biphenol ethers. J Phys Chem A 2007; 111: 42224234.
  • 162
    Mori T,Inoue Y,Grimme S. Quantum chemical study on the circular dichroism spectra and specific rotation of donor–acceptor cyclophanes. J Phys Chem A 2007; 111: 79958006.
  • 163
    Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 2004; 25: 14631473.
  • 164
    Frelek J,Kowalska P,Masnyk M,Kazimierski A,Korda A,Woznica M,Chmielewski M,Furche F. Circular dichroism and conformational dynamics of cephams and their carba- and oxaanalogues. Chem Eur J 2007; 6: 67326744.
  • 165
    Crassous J,Rivera J,Fender NS,Shu L,Echegoyen L,Thilgen C,Herrmann A,Diederich F. Chemistry of C84: separation of three constitutional isomers and optical resolution of D2-C84 by using the bingel-retro-bingel strategy. Angew Chem Int Ed Engl 1999; 38: 11.
  • 166
    Furche F,Ahlrichs R. Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 2002; 117: 74337474.
  • 167
    Nooijen M. Investigation of Herzberg–Teller Franck–Condon approaches and classical simulations to include effects due to vibronic couplings in circular dichroism spectra: the case of dimethyloxirane continued. Int J Quantum Chem 2006; 106: 24892510.
  • 168
    Santoro F,Improta R,Lami A,Bloino J,Barone V. Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution. J Chem Phys 2007; 126: 084509084513.
  • 169
    Santoro F,Lami A,Improta R,Bloino J,Barone V. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: The Qx band of porphyrin as a case study. J Chem Phys 2008; 128: 224311224317.
  • 170
    Cheeseman JR,Frisch MJ,Devlin FJ,Stephens PJ. Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Chem Phys Lett 1996; 252: 211220.
  • 171
    Stephens PJ,Ashvar CS,Devlin FJ,Cheeseman JR,Frisch MJ. Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Mol Phys 1996; 89: 579594.
  • 172
    Bohr HG,Jalkanen KJ,Elstner M,Frimand K,Suhai S. A comparative study of MP2, B3LYP, RHF and SCC-DFTB force fields in predicting the vibrational spectra of N-acetyl-L-alanine-N′-methyl amide: VA and VCD spectra. Chem Phys 1999; 246: 1336.
  • 173
    Stephens PJ,Devlin FJ. Determination of the structure of chiral molecules using ab initio vibrational circular dichroism spectroscopy. Chirality 2000; 12: 172179.
  • 174
    Bour P,Zaruba K,Urbanova M,Setnicka V,Matejka P,Fiedler Z,Kral V,Volka K. Vibrational circular dichroism of tetraphenylporphyrin in peptide complexes? A computational study. Chirality 2000; 12: 191198.
  • 175
    Kaminsky J,Kapitan J,Baumruk V,Bednarova L,Bour P. Interpretation of Raman and Raman optical activity spectra of a flexible sugar derivative, the gluconic acid anion. J Phys Chem A 2009; 113: 35943601.
  • 176
    Bour P,Kim J,Kapitan J,Hammer RP,Huang R,Wu L,Keiderling TA. Vibrational circular dichroism and IR spectral analysis as a test of theoretical conformational modeling for a cyclic hexapeptide. Chirality 2008; 20: 11041119.
  • 177
    Wilson SM,Wiberg KB,Cheeseman JR,Frisch MJ,Vaccaro PH. Nonresonant optical activity of isolated organic molecules. J Phys Chem A 2005; 109: 1175211764.
  • 178
    Tam MC,Russ NJ,Crawford TD. Coupled cluster calculations of optical rotatory dispersion of (S)-methyloxirane. J Chem Phys 2004; 121: 35503557.
  • 179
    Wiberg KB,Wang Y,Murphy MJ,Vaccaro PH. Temperature dependence of optical rotation: α-pinene, β-pinene, pinane, camphene, camphor, and fenchone. J Phys Chem A 2004; 108: 55595563.
  • 180
    Ruud K,Åstrand PO,Taylor PR. Molecular magnetizabilities: zero-point vibrational effects and the breakdown of Pascal's rule. J Phys Chem A 2001; 105: 99269930.
  • 181
    Mort BC,Autschbach J. A Pragmatic recipe for the treatment of hindered rotations in the vibrational averaging of molecular properties. Chem Phys Chem 2008; 9: 159170.
  • 182
    Neugebauer J. Induced chirality in achiral media—how theory unravels mysterious solvent effects. Angew Chem Int Ed Engl 2007; 46: 77387740.
  • 183
    Wiberg KB,Wang YG,Wilson SM,Vaccaro PH,Jorgensen WL,Crawford TD,Abrams ML,Cheeseman JR,Luderer M. Optical rotatory dispersion of 2,3-hexadiene and 2,3-pentadiene. J Phys Chem A 2008; 112: 24152422.
  • 184
    Costante J,Hecht L,Polavarapu PL,Collet A,Barron LD. Absolute configuration of bromochlorofluoromethane from experimental and ab initio theoretical vibrational Raman optical activity. Angew Chem Int Ed Engl 1997; 36: 885887.
  • 185
    Nafie LA. Theory of resonance Raman optical activity: the single electronic state limit. Chem Phys 1996; 205: 309322.
  • 186
    Vargek M,Freedman TB,Lee E,Nafie LA. Experimental observation of resonance Raman optical activity. Chem Phys Lett 1998; 287: 359364.
  • 187
    Wiberg KB,Wang Y,Vaccaro PH,Cheeseman JR,Luderer MR. Conformational effects on optical rotation: 2-substituted butanes. J Phys Chem A 2005; 109: 34053410.
  • 188
    Marchesan D,Coriani S,Forzato C,Nitti P,Pitacco G,Ruud K. Optical rotation calculation of a highly flexible molecule: the case of paraconic acid. J Phys Chem A 2005; 109: 14491453.
  • 189
    Specht KM,Nam J,Ho DM,Berova N,Kondru RK,Beratan DN,Wipf P,Pascal RA,Kahne D. Determining absolute configuration in flexible molecules: a case study. J Am Chem Soc 2001; 123: 89618966.
  • 190
    Pecul M,Ruud K,Rizzo A,Helgaker T. Conformational effects on the optical rotation of alanine and proline. J Phys Chem A 2004; 108: 42694276.
  • 191
    Pecul M. Conformational structures and optical rotation of serine and cysteine. Chem Phy Lett 2006; 418: 110.
  • 192
    Polavarapu PL,Petrovic A,Wang F. Intrinsic rotation and molecular structure. Chirality 2003; 15: S143S149.
  • 193
    Tam MC,Crawford TD. Ab initio determination of optical rotatory dispersion in the conformationally flexible molecule (R)-epichlorohydrin. J Phys Chem A 2006; 110: 22902298.
  • 194
    Goldsmith MR,Jayasuriya N,Beratan DN,Wipf P. Optical rotation of noncovalent aggregates. J Am Chem Soc 2003; 125: 1569615697.
  • 195
    He Y,Cao X,Nafie LA,Freedman TA. Ab Initio VCD Calculation of a transition-metal containing molecule and a new intensity enhancement mechanism for VCD. J Am Chem Soc 2001; 123: 1132011321.
  • 196
    Freedman TB,Cao X,Young DA,Nafie LA. Density functional theory calculations of vibrational circular dichroism in transition metal complexes: identification of solution conformations and mode of chloride ion association for (+)-tris(ethylenediaminato)cobalt(III). J Phys Chem A 2002; 106: 35603565.
  • 197
    Corey EJ,Bailar JCJr. The stereochemistry of complex inorganic compounds. XXII. Stereospecific effects in complex ions. J Am Chem Soc 1959; 81: 26202629.
  • 198
    Le Guennic B,Hieringer W,Görling A,Autschbach J. Density functional calculations of electronic circular dichroism spectra of the transition metal complexes [M(phen)3]2+ (M = Fe, Ru, Os). J Phys Chem A 2005; 109: 48364846.
  • 199
    Jorge FE,Autschbach J,Ziegler T. On the origin of optical activity in tris–diamine complexes of Co(III) and Rh(III). A simple model based on time-dependent density functional theory. J Am Chem Soc 2005; 127: 975985.
  • 200
    Jorge FE,Autschbach J,Ziegler T. On the origin of the optical activity in the d–d transition region of tris–bidentate Co(III) and Rh(III) complexes. Inorg Chem 2003; 42: 89028910.
  • 201
    Jensen L,Swart M,van Duijnen PT,Autschbach J. The CD-spectrum of [Co(en)3]3+ in solution using the Discrete Solvent Reaction Field model. Int J Quantum Chem 2006; 106: 24792488.
  • 202
    Telfer SG,Tajima N,Kuroda R. CD spectra of polynuclear complexes of diimine ligands: theoretical and experimental evidence for the importance of internuclear exciton coupling. J Am Chem Soc 2004; 126: 14081418.
  • 203
    Vargas A,Zerara M,Krausz E,Hauser A,Lawson Daku LM. Density-functional theory investigation of the geometric, energetic, and optical properties of the cobalt(II)tris(2,2′-bipyridine) complex in the high-spin and the jahn-teller active low-spin states. J Chem Theor Comput 2006; 2: 13421359.
  • 204
    Thulstrup PW,Larsen E. The electronic structure and spectra of spin-triplet ground state bis(biuretato)cobalt(III) coordination compounds. Dalton Trans 2006; 17841789.
  • 205
    Fan J,Seth M,Autschbach J,Ziegler T. Circular dichroism of trigonal dihedral chromium(III) complexes: a theoretical study based on open–shell time-dependent density functional theory. Inorg Chem 2008; 47: 1165611668.
  • 206
    Fan J,Ziegler T. On the origin of circular dichroism in trigonal dihedral d6 complexes of bidentate ligands containing only sigma-orbitals. A qualitative model based on a density functional theory study of Lambda-[Co(en)3]3+. Chirality 2008; 20: 938950.
  • 207
    Fan J,Ziegler T. On the origin of circular dichroism in trigonal dihedral cobalt (III) complexes of unsaturated bidentate ligands. Inorg Chem 2008; 47: 47624773.
  • 208
    Coughlin FJ,Oyler KD,Pascal J Robert A,Bernhard S. Determination of absolute configuration of chiral hemicage metal complexes using time-dependent density functional theory. Inorg Chem 2008; 47: 974979.
  • 209
    Armstrong DW,Cotton FA,Petrovic AG,Polavarapu PL,Warnke MM. Resolution of enantiomers in solution and determination of the chirality of extended metal atom chains. Inorg Chem 2007; 46: 15351537.
  • 210
    Graule S,Rudolph M,Vanthuyne N,Autschbach J,Roussel C,Crassous J,Reau R. Metal-bis(helicene) assemblies incorporating π-conjugated phosphole-azahelicene ligands: impacting chiroptical properties by metal variation. J Am Chem Soc 2009; 131: 31833185.
  • 211
    Garzón IL,Reyes-Nava JA,Rodríguez-Hernández JI,Sigal I,Beltrán M,Michaelian K. Chirality in bare and passivated gold nanoclusters. Phys Rev B 2002; 66: 073403.
  • 212
    Garzón IL,Beltrán MR,González G,Gutíerrez-González I,Michaelian K,Reyes-Nava JA,Rodríguez-Hernández JI. Chirality, defects, and disorder in gold clusters. Eur Phys J D 2003; 24: 105109.
  • 213
    Román-Velázquez CE,Noguez C,Garzón IL. Circular dichroism simulated spectra of chiral gold nanoclusters: A dipole approximation. J Phys Chem B 2003; 107: 1203512038.
  • 214
    Goldsmith MR,George CB,Zuber G,Naaman R,Waldeck DH,Wipf P,Beratan DN. The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates. Phys Chem Chem Phys 2006; 8: 6367.
  • 215
    Lehl H,Buschbeck KC,Gagarin R. Kobalt B/2. In: Gmelins Handbuch der Anorganischen Chemie. Weinheim: Verlag Chemie 1964. p 357358.
  • 216
    Moxon JRL,Renshaw AR. The simultaneous measurement of optical activity and circular dichroism in birefringent linearly dichroic crystal sections. I. Introduction and description of the method. J Phys: Condens Matter 1990; 2: 68076836.
  • 217
    Moxon JRL,Renshaw AR,Tebbutt IJ. The simultaneous measurement of optical activity and circular dichroism in birefringent linearly dichroic crystal sections. II. Description of apparatus and results for quartz, nickel sulphate hexahydrate and benzil. J Phys D: Appl Phys 1991; 24: 11871192.
  • 218
    Kaminsky W,Glazer AM. Measurement of optical rotation in crystals. Ferroelectrics 1996; 183: 133141.
  • 219
    Claborn K,Isborn C,Kaminsky W,Kahr B. Optical rotation of achiral compounds. Angew Chem Int Ed Engl 2008; 47: 57065717.
  • 220
    Kuball HG,Acimis M,Altschuh J. Optical activity of oriented molecules. 5. Alpha, beta-unsaturated keto steroids. J Am Chem Soc 1979; 101: 2027.
  • 221
    Kuball HG,Höfer T. Cirlcular dichroism of oriented molecules. In: BerovaN,NakanishiK,WoodyRW (editors). Circular dichroism. Principles and applications,2nd edition,chapter 5. New York: VCH; 2000. p 133158.
  • 222
    Kuball HG. CD and ACD Spectroscopy on anisotropic samples: chirality of oriented molecules and anisotropic phases—A critical analysis. Enantiomer 2002; 7: 197205.
  • 223
    Claborn K,Herreros Cedres J,Isborn C,Zozulya A,Weckert E,Kaminsky W,Kahr B. Optical rotation of achiral pentaerythritol. JAm Chem Soc 2006; 128: 1474614747.
  • 224
    Krykunov M,Autschbach J. Calculation of origin independent optical rotation tensor components for chiral oriented systems in approximate time-dependent density functional theory. J Chem Phys 2006; 125: 034102034110.
  • 225
    Pedersen TB,Hansen AE. Ab initio calculation and display of the rotatory strength tensor in the random phase approximation. Method and model studies. Chem Phys Lett 1995; 246: 18.
  • 226
    Hansen AE,Bak KL. Ab initio calculations and display of enantiomeric and nonenantiomeric anisotropic circular dichroism: the lowest π [RIGHTWARDS ARROW]π* excitation in butadiene, cyclohexadiene, and methyl-substituted cyclohexadienes. J Phys Chem A 2000; 104: 1136211370.
  • 227
    Pedersen TB,Koch H,Ruud K. Coupled cluster response calculation of natural chiroptical spectra. J Chem Phys 1999; 110: 28832892.
  • 228
    Kongsted J,Pedersen TB,Osted A,Hansen AE,Mikkelsen KV. Solvent effects on rotatory strength tensors. I. Theory and application of the combined coupled cluster/dielectric continuum model. J Phys Chem A 2004; 108: 36323641.
  • 229
    Kongsted J,Hansen AE,Pedersen TB,Osted A,Mikkelsen KV,Christiansen O. A coupled cluster study of the oriented circular dichroism of the n [RIGHTWARDS ARROW]π* electronic transition in cyclopropanone and natural optical active related structures. Chem Phys Lett 2004; 391: 259266.