• 1
    Dedon PC,Tannenbaum SR. Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Biophys 2004; 423: 1222.
  • 2
    Luch A. Nature and nurture—lessons from chemical carcinogenesis. Nat Rev Cancer 2005; 5: 113125.
  • 3
    Geacintov NE,Cosman M,Hingerty BE,Amin S,Broyde S,Patel DJ. NMR solution structures of stereoisometric covalent polycyclic aromatic carcinogen–DNA adduct: principles, patterns, and diversity. Chem Res Toxicol 1997; 10: 111146.
  • 4
    Chary P,Latham GJ,Robberson DL,Kim SJ,Han S,Harris CM,Harris TM,Lloyd RS. In vivo and in vitro replication consequences of stereoisomeric benzo[a]pyrene-7,8-dihydrodiol 9,10-epoxide add-ucts on adenine N6 at the second position of N-ras codon 61. J Biol Chem 1995; 270: 49905000.
  • 5
    Chary P,Lloyd RS. In vitro replication by prokaryotic and eukaryotic polymerases on DNA templates containing site-specific and stereospecific benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide adducts. Nucleic Acids Res 1995; 23: 13981405.
  • 6
    Rechkoblit O,Zhang Y,Guo D,Wang Z,Amin S,Krzeminsky J,Louneva N,Geacintov NE. Translesion synthesis past bulky benzo[a]pyrene diol epoxide N2-dG and N6-dA lesions catalyzed by DNA bypass polymerases. J Biol Chem 2002; 277: 3048830494.
  • 7
    Suzuki N,Ohashi E,Kolbanovskiy A,Geacintov NE,Grollman AP,Ohmori H,Shibutani S. Translesion synthesis by human DNA polymerase κ on a DNA template containing a single stereoisomer of dG-(+)- or dG-(−)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry 2002; 41: 61006106.
  • 8
    Seo KY,Nagalingam A,Miri S,Yin J,Chandani S,Kolbanovskiy A,Shastry A,Loechler EL. Mirror image stereoisomers of the major benzo[a]pyrene N2-dG adduct are bypassed by different lesion-bypass DNA polymerases in E. coli. DNA Repair (Amst) 2006; 5: 515522.
  • 9
    Shibutani S,Margulis LA,Geacintov NE,Grollman AP. Translesional synthesis on a DNA template containing a single stereoisomer of dG-(+)- or dG-(−)-anti-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry 1993; 32: 75317541.
  • 10
    Buterin T,Hess MT,Luneva N,Geacintov NE,Amin S,Kroth H,Seidel A,Naegeli H. Unrepaired fjord region polycyclic aromatic hydrocarbon-DNA adducts in ras codon 61 mutational hot spots. Cancer Res 2000; 60: 18491856.
  • 11
    Hess MT,Gunz D,Luneva N,Geacintov NE,Naegeli H. Base pair conformation-dependent excision of benzo[a]pyrene diol epoxide–guanine adducts by human nucleotide excision repair enzymes. Mol Cell Biol 1997; 17: 70697076.
  • 12
    Zou Y,Liu TM,Geacintov NE,Van Houten B. Interaction of the UvrABC nuclease system with a DNA duplex containing a single stereoisomer of dG-(+)- or dG-(−)-anti-BPDE. Biochemistry 1995; 34: 1358213593.
  • 13
    Geacintov NE,Broyde S,Buterin T,Naegeli H,Wu M,Yan SX,Patel DJ. Thermodynamic and structural factors in the removal of bulky DNA adducts by the nucleotide excision repair machinery. Biopolymers 2002; 65: 202210.
  • 14
    Karle IL,Yagi H,Sayer JM,Jerina DM. Crystal and molecular structure of a benzo[a]pyrene 7,8-diol 9,10-epoxide N2-deoxyguanosine adduct: absolute configuration and conformation. Proc Natl Acad Sci USA 2004; 101: 14331438.
  • 15
    Weems HB,Yang SK. Chiral stationary phase high-performance liquid chromatographic resolution and absolute configuration of enantiomeric benzo[a]pyrene diol-epoxides and tetrols. Chirality 1989; 1: 276283.
  • 16
    Kroth H,Yagi H,Seidel A,Jerina DM. New and highly efficient synthesis of cis- and trans-opened benzo[a]pyrene 7,8-diol 9,10-epoxide adducts at the exocyclic N(2)-amino group of deoxyguanosine. J Org Chem 2000; 65: 55585564.
  • 17
    Cadet J,Douki T,Ravanat JL. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res 2008; 41: 10751083.
  • 18
    Neeley WL,Essigmann JM. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 2006; 19: 491505.
  • 19
    Bolton JL,Pisha E,Zhang F,Qiu S. Role of quinoids in estrogen carcinogenesis. Chem Res Toxicol 1998; 11: 11131127.
  • 20
    Hersh AL,Stefanick ML,Stafford RS. National use of postmenopausal hormone therapy: annual trends and response to recent evidence. JAMA 2004; 291: 4753.
  • 21
    Okamoto Y,Chou PH,Kim SY,Suzuki N,Laxmi YRS,Okamoto K,Liu XP,Matsuda T,Shibutani S. Oxidative DNA damage in Xpc-knockout and its wild mice treated with equine estrogen. Chem Res Toxicol 2008; 21: 11201124.
  • 22
    Ravdin PM,Cronin KA,Howlader N,Berg CD,Chlebowski RT,Feuer EJ,Edwards BK,Berry DA. The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med 2007; 356: 16701674.
  • 23
    Rossouw JE,Anderson GL,Prentice RL,LaCroix AZ,Kooperberg C,Stefanick ML,Jackson RD,Beresford SA,Howard BV,Johnson KC,Kotchen JM,Ockene J. Risks and benefits of estrogen plus progestinin healthy postmenopausal women: principal results from the women's health initiative randomized controlled trial. JAMA 2002; 288: 321333.
  • 24
    Yager JD,Davidson NE. Mechanisms of disease: estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 354: 270282.
  • 25
    Ding S,Shapiro R,Cai Y,Geacintov NE,Broyde S. Conformational properties of equilenin–DNA adducts: stereoisomer and base effects. Chem Res Toxicol 2008; 21: 10641073.
  • 26
    Jia L,Shafirovich V,Shapiro R,Geacintov NE,Broyde S. Structural and thermodynamic features of spiroiminodihydantoin damaged DNA duplexes. Biochemistry 2005; 44: 1334213353.
  • 27
    Kolbanovskiy A,Kuzmin V,Shastry A,Kolbanovskaya M,Chen D,Chang M,Bolton JL,Geacintov NE. Base selectivity and effects of sequence and DNA secondary structure on the formation of covalent adducts derived from the equine estrogen metabolite 4-hydroxyequilenin. Chem Res Toxicol 2005; 18: 17371747.
  • 28
    Ding S,Wang Y,Kolbanovskiy A,Durandin A,Bolton JL,van Breemen RB,Broyde S,Geacintov NE. Determination of absolute configurations of 4-hydroxyequilenin-cytosine and adenine adducts by optical rotatory dispersion, electronic circular dichroism, density functional theory calculations, and mass spectrometry. Chem Res Toxicol 2008; 21: 17391748.
  • 29
    Polavarapu PL. Ab initio molecular optical rotations and absolute configurations. Mol Phys 1997; 91: 551554.
  • 30
    Polavarapu PL,Chakraborty DK. Absolute stereochemistry of chiral molecules from ab initio theoretical and experimental molecular optical rotations. J Am Chem Soc 1998; 120: 61606164.
  • 31
    Kondru RK,Wipf P,Beratan DN. Theory-assisted determination of absolute stereochemistry for complex natural products via computation of molar rotation angles. J Am Chem Soc 1998; 120: 22042205.
  • 32
    Cheeseman JR,Frisch MJ,Devlin FJ,Stephens PJ. Hartree-Fock and density functional theory ab initio calculation of optical rotation using GIAOs: basis set dependence. J Phys Chem A 2000; 104: 10391046.
  • 33
    Stephens PJ,Devlin FJ,Cheeseman JR,Frisch MJ,Mennucci B,Tomasi J. Prediction of optical rotation using density functional theory: 6,8-dioxabicyclo[3.2.1]octanes. Tetrahedron: Asymmetry 2000; 11: 24432448.
  • 34
    Stephens PJ,Devlin FJ,Cheeseman JR,Frisch MJ. Calculation of optical rotation using density functional theory. J Phys Chem A 2001; 105: 53565371.
  • 35
    Grimme S. Calculation of frequency dependent optical rotation using density functional response theory. Chem Phys Lett 2001; 339: 380388.
  • 36
    Ruud K,Helgaker T. Optical rotation studied by density-functional and coupled-cluster methods. Chem Phys Lett 2002; 352: 533539.
  • 37
    Giorgio E,Viglione RG,Zanasi R,Rosini C. Ab initio calculation of optical rotatory dispersion (ORD) curves: a simple and reliable approach to the assignment of the molecular absolute configuration. J Am Chem Soc 2004; 126: 1296812976.
  • 38
    Stephens PJ,Devlin FJ,Cheeseman JR,Frisch MJ,Bortolini O,Besse P. Determination of absolute configuration using ab initio calculation of optical rotation. Chirality 2003; 15 ( Suppl): S57S64.
  • 39
    Stephens PJ,Mccann DM,Cheeseman JR,Frisch MJ. Determination of absolute configurations of chiral molecules using ab initio time-dependent density functional theory calculations of optical rotation: how reliable are absolute configurations obtained for molecules with small rotations? Chirality 2005; 17: S52S64.
  • 40
    Polavarapu PL. Optical rotation: recent advances in determining the absolute configuration. Chirality 2002; 14: 768781.
  • 41
    Polavarapu PL,He JT,Crassous J,Ruud K. Absolute configuration of C-76 from optical rotatory dispersion. Chem Phys Chem 2005; 6: 25352540.
  • 42
    Specht KM,Nam J,Douglas M,Ho DM,Berova N,Kondru RK,Beratan DN,Wipf P,Pascal RAJr,Kahne D. Determining absolute configuration in flexible molecules: a case study. J Am Chem Soc 2001; 123: 89618966.
  • 43
    Wang YK,Raabe G,Repges C,Fleischhauer J. Time-dependent density functional theory calculations on the chiroptical properties of rubroflavin: determination of its absolute configuration by comparison of measured and calculated CD spectra. Int J Quantum Chem 2003; 93: 265270.
  • 44
    Furche F,Ahlrichs R,Wachsmann C,Weber E,Sobanski A,Vogtle F,Grimme S. Circular dichroism of helicenes investigated by time-dependent density functional theory. J Am Chem Soc 2000; 122: 17171724.
  • 45
    Autschbach J,Ziegler T,van Gisbergen SJA,Baerends EJ. Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules. J Chem Phys 2002; 116: 69306940.
  • 46
    Stephens PJ,McCann DM,Devlin FJ,Cheeseman JR,Frisch MJ. Determination of the absolute configuration of [3(2)](1,4) barrelenophanedicarbonitrile using concerted time-dependent density functional theory calculations of optical rotation and electronic circular dichroism. J Am Chem Soc 2004; 126: 75147521.
  • 47
    Polavarapu PL. Renaissance in chiroptical spectroscopic methods for molecular structure determination. Chem Rec 2007; 7: 125136.
  • 48
    Polavarapu PL. Why is it important to simultaneously use more than one chiroptical spectroscopic method for determining the structures of chiral molecules? Chirality 2008; 20: 664672.
  • 49
    Stephens PJ,McCann DM,Butkus E,Stoncius S,Cheeseman JR,Frisch MJ. Determination of absolute configuration using concerted ab initio DFT calculations of electronic circular dichroism and optical rotation: bicyclo[3.3.1]nonane diones. J Org Chem 2004; 69: 19481958.
  • 50
    Stephens PJ,Pan JJ,Devlin FJ,Krohn K,Kurtan T. Determination of the absolute configurations of natural products via density functional theory calculations of vibrational circular dichroism, electronic circular dichroism, and optical rotation: the iridoids plumericin and isoplumericin. J Org Chem 2007; 72: 35213536.
  • 51
    Stephens PJ,Pan JJ,Devlin FJ,Urbanova M,Julinek O,Hajicek J. Determination of the absolute configurations of natural products via density functional theory calculations of vibrational circular dichroism, electronic circular dichroism, and optical rotation: the iso-schizozygane alkaloids isoschizogaline and isoschizogamine. Chirality 2008; 20: 454470.
  • 52
    Kwit M,Sharma ND,Boyd DR,Gawronski J. Absolute configuration of conformationally flexible cis-dihydrodiol metabolites by the method of confrontation of experimental and calculated electronic CD spectra and optical rotations. Chem—Eur J 2007; 13: 58125821.
  • 53
    Giorgio E,Tanaka K,Verotta L,Nakanishi K,Berova N,Rosini C. Determination of the absolute configurations of flexible molecules: synthesis and theoretical simulation of electronic circular dichroism/optical rotation of some pyrrolo[2,3-b]indoline alkaloids—a case study. Chirality 2007; 19: 434445.
  • 54
    Crawford TD,Stephens PJ. Comparison of time-dependent density-functional theory and coupled cluster theory for the calculation of the optical rotations of chiral molecules. J Phys Chem A 2008; 112: 13391345.
  • 55
    Zhang P,Polavarapu PL. Spectroscopic investigation of the structures of dialkyl tartrates and their cyclodextrin complexes. J Phys Chem A 2007; 111: 858871.
  • 56
    Tartaglia S,Padula D,Scafato P,Chiummiento L,Rosini C. A chemical/computational approach to the determination of absolute configuration of flexible and transparent molecules: aliphatic diols as a case study. J Org Chem 2008; 73: 48654873.
  • 57
    Mori T,Grimme S,Inoue Y. A combined experimental and theoretical study on the conformation of multiarmed chiral aryl ethers. J Org Chem 2007; 72: 69987010.
  • 58
    Durandin A,Jia L,Crean C,Kolbanovskiy A,Ding S,Shafirovich V,Broyde S,Geacintov NE. Assignment of absolute configurations of the enantiomeric spiroiminodihydantoin nucleobases by experimental and computational optical rotatory dispersion methods. Chem Res Toxicol 2006; 19: 908913.
  • 59
    Ding S,Jia L,Durandin A,Crean C,Kolbanovskiy A,Shafirovich V,Broyde S,Geacintov NE. Absolute configurations of spiroiminodihydantoin and allantoin stereoisomers: comparison of computed and measured electronic circular dichroism spectra. Chem Res Toxicol 2009; 22: 11891193.
  • 60
    Stephens PJ,Pan JJ,Devlin FJ,Urbanova M,Hajicek J. Determination of the absolute configurations of natural products via density functional theory calculations of vibrational circular dichroism, electronic circular dichroism and optical rotation: the schizozygane alkaloid schizozygine. J Org Chem 2007; 72: 25082524.
  • 61
    Stephens PJ,Devlin FJ,Gasparrini F,Ciogli A,Spinelli D,Cosimelli B. Determination of the absolute configuration of a chiral oxadiazol-3-one calcium channel blocker, resolved using chiral chromatography, via concerted density functional theory calculations of its vibrational circular dichroism, electronic circular dichroism, and optical rotation. J Org Chem 2007; 72: 47074715.
  • 62
    Petrovic AG,Polavarapu PL. Chiroptical spectroscopic determination of molecular structures of chiral sulfinamides: t-butanesulrinamide. JPhys Chem A 2007; 111: 1093810943.
  • 63
    Petrovic AG,Polavarapu PL,Drabowicz J,Lyzwa P,Mikolajczyk M,Wieczorek W,Balinska A. Diastereomers of N-α-phenylethyl-t-butylsulfinamide: absolute configurations and predominant conformations. J Org Chem 2008; 73: 31203129.
  • 64
    Petrovic AG,Vick SE,Polavarapu PL. Determination of the absolute stereochemistry of chiral biphenanthiryls in solution phase using chiroptical spectroscopic methods: 2,2′-diphenyl-[3,3′-biphenanthrene]-4,4′-diol. Chirality 2008; 20: 501510.
  • 65
    Shen L,Pisha E,Huang Z,Pezzuto JM,Krol E,Alam Z,van Breemen RB,Bolton JL. Bioreductive activation of catechol estrogen-ortho-quinones: aromatization of the B ring in 4-hydroxyequilenin markedly alters quinoid formation and reactivity. Carcinogenesis 1997; 18: 10931101.
  • 66
    Zhang F,Chen Y,Pisha E,Shen L,Xiong Y,van Breemen RB,Bolton JL. The major metabolite of equilin, 4-hydroxyequilin, autoxidizes to an o-quinone which isomerizes to the potent cytotoxin 4-hydroxyequilenin-o-quinone. Chem Res Toxicol 1999; 12: 204213.
  • 67
    Bolton JL,Thatcher GR. Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol 2008; 21: 93101.
  • 68
    Shen L,Qiu S,Chen Y,Zhang F,van Breemen RB,Nikolic D,Bolton JL. Alkylation of 2′-deoxynucleosides and DNA by the premarin metabolite 4-hydroxyequilenin semiquinone radical. Chem Res Toxicol 1998; 11: 94101.
  • 69
    Embrechts J,Lemiere F,Van Dongen W,Esmans EL. Equilenin-2′-deoxynucleoside adducts: analysis with nano-liquid chromatography coupled to nano-electrospray tandem mass spectrometry. J Mass Spectrom 2001; 36: 317328.
  • 70
    Zhang F,Swanson SM,van Breemen RB,Liu X,Yang Y,Gu C,Bolton JL. Equine estrogen metabolite 4-hydroxyequilenin induces DNA damage in the rat mammary tissues: formation of single-strand breaks, apurinic sites, stable adducts, and oxidized bases. Chem Res Toxicol 2001; 14: 16541659.
  • 71
    Embrechts J,Lemiere F,Van Dongen W,Esmans EL,Buytaert P,Van Marck E,Kockx M,Makar A. Detection of estrogen DNA-adducts in human breast tumor tissue and healthy tissue by combined nano LC-nano ES tandem mass spectrometry. J Am Soc Mass Spectrom 2003; 14: 482491.
  • 72
    Zhang N,Ding S,Kolbanovskiy A,Shastry A,Kuzmin VA,Bolton JL,Patel DJ,Broyde S,Geacintov NE. NMR and computational studies of stereoisomeric equine estrogen-derived DNA cytidine adducts in oligonucleotide duplexes: opposite orientations of diastereomeric forms. Biochemistry 2009; 48: 70987109.
  • 73
    Suzuki N,Yasui M,Santosh Laxmi YR,Ohmori H,Hanaoka F,Shibutani S. Translesion synthesis past equine estrogen-derived 2′-deoxycytidine DNA adducts by human DNA polymerases eta and kappa. Biochemistry 2004; 43: 1131211320.
  • 74
    Chen D. Nucleotide excision repair and translesion synthesis of DNA adducts derived from the equine estrogen metabolite 4-hydroxyequilenin. Department of Chemistry, Ph.D. Dissertation, New York University; 2007.
  • 75
    Adam W,Arnold MA,Grune M,Nau WM,Pischel U,Saha-Moller CR. Spiroiminodihydantoin is a major product in the photooxidation of 2′-deoxyguanosine by the triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis. Org Lett 2002; 4: 537540.
  • 76
    Luo W,Muller JG,Rachlin EM,Burrows CJ. Characterization of spiroiminodihydantoin as a product of one-electron oxidation of 8-oxo-7,8-dihydroguanosine. Org Lett 2000; 2: 613616.
  • 77
    Niles JC,Wishnok JS,Tannenbaum SR. Spiroiminodihydantoin is the major product of the 8-oxo-7,8-dihydroguanosine reaction with peroxynitrite in the presence of thiols and guanosine photooxidation by methylene blue. Org Lett 2001; 3: 963966.
  • 78
    Misiaszek R,Crean C,Geacintov NE,Shafirovich V. Combination of nitrogen dioxide radicals with 8-oxo-7,8-dihydroguanine and guanine radicals in DNA: oxidation and nitration end products. J Am Chem Soc 2005; 127: 21912200.
  • 79
    Jia L,Shafirovich V,Shapiro R,Geacintov NE,Broyde S. Spiroiminodihydantoin lesions derived from guanine oxidation: structures, energetics, and functional implications. Biochemistry 2005; 44: 60436051.
  • 80
    Chinyengetere F,Jamieson ER. Impact of the oxidized guanine lesion spiroiminodihydantoin on the conformation and thermodynamic stability of a 15-mer DNA duplex. Biochemistry 2008; 47: 25842591.
  • 81
    Kornyushyna O,Berges AM,Muller JG,Burrows CJ. In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (Klenow fragment). Biochemistry 2002; 41: 1530415314.
  • 82
    Kornyushyna O,Burrows CJ. Effect of the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin on proofreading by Escherichia coli DNA polymerase I (Klenow fragment) in different sequence contexts. Biochemistry 2003; 42: 1300813018.
  • 83
    Henderson PT,Delaney JC,Gu F,Tannenbaum SR,Essigmann JM. Oxidation of 7,8-dihydro-8-oxoguanine affords lesions that are potent sources of replication errors in vivo. Biochemistry 2002; 41: 914921.
  • 84
    Henderson PT,Delaney JC,Muller JG,Neeley WL,Tannenbaum SR,Burrows CJ,Essigmann JM. The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Biochemistry 2003; 42: 92579262.
  • 85
    Neeley WL,Delaney S,Alekseyev YO,Jarosz DF,Delaney JC,Walker GC,Essigmann JM. DNA polymerase V allows bypass of toxic guanine oxidation products in vivo. J Biol Chem 2007; 282: 1274112748.
  • 86
    Krishnamurthy N,Zhao XB,Burrows CJ,David SS. Superior removal of hydantoin lesions relative to other oxidized bases by the human DNA glycosylase hNEIL1. Biochemistry 2008; 47: 71377146.
  • 87
    Hailer MK,Slade PG,Martin BD,Sugden KD. Nei deficient Escherichia coli are sensitive to chromate and accumulate the oxidized guanine lesion spiroiminodihydantoin. Chem Res Toxicol 2005; 18: 13781383.
  • 88
    Goerigk L,Grimme S. Calculation of electronic circular dichroism spectra with time-dependent double-hybrid density functional theory. J Phys Chem A 2009; 113: 767776.
  • 89
    Tam MC,Russ NJ,Crawford TD. Coupled cluster calculations of optical rotatory dispersion of (S)-methyloxirane. J Chem Phys 2004; 121: 35503557.
  • 90
    Polavarapu PL,Petrovic A,Wang F. Intrinsic rotation and molecular structure. Chirality 2003; 15( Suppl): S143S149.
  • 91
    McCann DM,Stephens PJ. Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: chiral alkenes. J Org Chem 2006; 71: 60746098.
  • 92
    Mori T,Inoue Y,Grimme S. Time-dependent density functional theory calculations for electronic circular dichroism spectra and optical rotations of conformationally flexible chiral donor–acceptor dyad. J Org Chem 2006; 71: 97979806.
  • 93
    Polavarapu PL,Zhao CX. Ab initio predictions of anomalous optical rotatory dispersion. J Am Chem Soc 1999; 121: 246247.
  • 94
    Giorgio E,Roje M,Tanaka K,Hamersak Z,Sunjic V,Nakanishi K,Rosini C,Berova N. Determination of the absolute configuration of flexible molecules by ab initio ORD calculations: a case study with cytoxazones and isocytoxazones. J Org Chem 2005; 70: 65576563.
  • 95
    Crassous J,Jiang ZJ,Schurig V,Polavarapu PL. Preparation of (+)-chlorofluoroiodomethane, determination of its enantiomeric excess and of its absolute configuration. Tetrahedron: Asymmetry 2004; 15: 19952001.
  • 96
    Rinderspacher BC,Schreiner PR. Structure–property relationships of prototypical chiral compounds: case studies. J Phys Chem A 2004; 108: 28672870.
  • 97
    Norman P,Ruud K,Helgaker T. Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions. J Chem Phys 2004; 120: 50275035.
  • 98
    Diedrich C,Grimme S. Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A 2003; 107: 25242539.
  • 99
    Pecul M,Ruud K,Helgaker T. Density functional theory calculation of electronic circular dichroism using London orbitals. Chem Phys Lett 2004; 388: 110119.
  • 100
    Iizuka E,Yang JT. Optical rotatory dispersion of L-amino acids in acid solution. Biochemistry 1964; 3: 15191524.
  • 101
    Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,Montgomery JJA,Vreven T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J,Ishida M,Nakajima T,Honda Y,Kitao O,Nakai H,Klene M,Li X,Knox JE,Hratchian HP,Cross JB,Bakken V,Adamo C,Jaramillo J,Gomperts R,Stratmann RE,Yazyev O,Austin AJ,Cammi R,Pomelli C,Ochterski JW,Ayala PY,Morokuma K,Voth GA,Salvador P,Dannenberg JJ,Zakrzewski VG,Dapprich S,Daniels AD,Strain MC,Farkas O,Malick DK,Rabuck AD,Raghavachari K,Foresman JB,Ortiz JV,Cui Q,Baboul AG,Clifford S,Cioslowski J,Stefanov BB,Liu G,Liashenko A,Piskorz P,Komaromi I,Martin RL,Fox DJ,Keith T,Al-Laham MA,Peng CY,Nanayakkara A,Challacombe M,Gill PMW,Johnson B,Chen W,Wong MW,Gonzalez C,Pople JA. Gaussian. Wallingford, CT: Gaussian Inc.; 2004.
  • 102
    Karwowski B,Dupeyrat F,Bardet M,Ravanat JL,Krajewski P,Cadet J. Nuclear magnetic resonance studies of the 4R and 4S diastereomers of spiroiminodihydantoin 2′-deoxyribonucleosides: absolute configuration and conformational features. Chem Res Toxicol 2006; 19: 13571365.
  • 103
    Mori T,Inoue Y,Grimme S. Quantum chemical study on the circular dichroism spectra and specific rotation of donor–acceptor cyclophanes. J Phys Chem A 2007; 111: 79958006.