SEARCH

SEARCH BY CITATION

REFERENCES

  • Cass, M. J., A. B. Walker, D. Martinez and L. M. Peter, “Grain Morphology and Trapping Effects on Electron Transport in Dye-Sensitized Nanocrystalline Solar Cells,” J. Phys. Chem. B 109, 51005107 (2005).
  • Dai, S. Y., J. Weng, Y. F. Sui, C. W. Shi, Y. Huang, S. H. Chen, X. Pan, X. Q. Fang, L. H. Hu, F. T. Kong and K. J. Wang, “Dye-Sensitized Solar Cells, from Cell to Module,” Sol. Energy Mater. Sol. Cells 84, 125133 (2004).
  • Dloczik, L., O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, “Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: Characterization by Intensity Modulated Photocurrent Spectroscopy,” J. Phys. Chem. B 101, 1028110289 (1997).
  • Durr, M., G. Kron, U. Rau, J. H. Werner, A. Yasuda and G. Nelles, “Diffusion-Limited Transport of Imath image Through Nanoporous TiO2-polymer Gel Networks,” J. Chem. Phys. 121, 1137411378 (2004).
  • Ferber, J. and J. Luther, “Modeling of Photovoltage and Photocurrent in Dye-Sensitized Titanium Dioxide Solar Cells,” J. Phys. Chem. B 105, 48954903 (2001).
  • Fredin, K., J. Nissfolk and A. Hagfeldt, “Brownian Dynamics Simulations of Electrons and Ions in Mesoporous Films,” Sol. Energy Mater. Sol. Cells 86, 283297 (2005).
  • Fukai, Y., Y. Kondo, S. Mori and E. Suzuki, “Highly Efficient Dye-Sensitized SnO2 Solar Cells having Sufficient Electron Diffusion Length,” Electrochem. Commun. 9, 14391443 (2007).
  • Gomez, R. and P. Salvador, “Photovoltage Dependence on Film Thickness and Type of Illumination in Nanoporous Thin Film Electrodes According to a Simple Diffusion Model,” Sol. Energy Mater. Sol. Cells 88, 377388 (2005).
  • Gratzel, M.,Perspective for Dye-Sensitized Nanocrystalline Solar Cells,” Prog. Photovolt. Res. Appl. 8, 171185 (2000).
  • Gratzel, M., “Photoelectrochemical Cells,” Nature 414, 338344 (2001).
  • Gratzel, M., “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells,” Inorg. Chem. 44, 68416851 (2005).
  • Gratzel, M., “The Advent of Mesoscopic Injection Solar Cells,” Prog. Photovolt. Res. Appl. 14, 429442 (2006).
  • Gregg, B. A., “Interfacial Processes in the Dye-Sensitized Solar Cell,” Coord. Chem. Rev. 248, 12151524 (2004).
  • Hara, K., T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, “Highly Efficient Photon-to-Electron Conversion with Mercurochrome-Sensitized Nanoporous Oxide Semiconductor Solar Cells,” Sol. Energy Mater. Sol. Cells 64, 115134 (2000).
  • Hohm, D. P. and M. E. Ropp, “Comparative Study of Maximum Power Point Tracking Algorithms,” Prog. Photovolt. Res. Appl. 11, 4762 (2003).
  • Ito, S., K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin and M. Gratzel, “Photovoltaic Characterization of Dye-Sensitized Solar Cells: Effect of Device Masking on Conversion Efficiency,” Prog. Photovolt. Res. Appl. 14, 589601 (2006).
  • Jiu, J. T., F. M. Wang, M. Sakamoto, J. Takao and M. Adachi, “Performance of Dye-Sensitized Solar Cell Based on Nanocrystals TiO2 Film Prepared with Mixed Template Method,” Sol. Energy Mater. Sol. Cells 87, 7786 (2005).
  • Keis, K., E. Magnusson, H. Lindstrom, S. E. Lindquist and A. Hagfeldt, “A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes,” Sol. Energy Mater. Sol. Cells 73, 5158 (2002).
  • Kopidakis N., K. D. Benkstein, J. van de Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” J. Phys. Chem. B 107, 1130711315 (2003).
  • Kron, G., T. Egerter, G. Nelles, A. Yasuda, J. H. Werner and U. Rau, “Electrical Characterization of Dye Sensitized Nanocrystalline TiO2 Solar Cells with Liquid Electrolyte and Solid-State Organic Hole Conductor,” Thin Solid Films 403, 242246 (2002).
  • Kron, G., U. Rau and J. H. Werner, “Influence of the Built-in Voltage on the Fill Factor of Dye-Sensitized Solar Cells,” J. Phys. Chem. B 107, 1325813261 (2003a).
  • Kron, G., T. Egerter, J. H. Werner and U. Rau, “Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar Cells-Comparison of Electrolyte and Solid-State Devices,” J. Phys. Chem. B 107, 35563564 (2003b).
  • Kroon, J. M., N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien and G. E. Tulloch, “Nanocrystalline Dye-Sensitized Solar Cells having Maximum Performance,” Prog. Photovolt. Res. Appl. 15, 118 (2007).
  • Kumara, G. R. A., S. Kaneko, A. Konno, M. Okuya, K. Murakami, B. Onwona-agyeman and K. Tennakone, “Large Area Dye-Sensitized Solar Cell: Material Aspects of Fabrication,” Prog. Photovolt. Res. Appl. 14, 643651 (2006).
  • Lee, J. J., G. M. Coia and N. S. Lewis, “Current Density Versus Potential Characteristics of Dye-Sensitized Nanostructured Semiconductor Photoelectrodes. 2. Simulation,” J. Phys. Chem. B 108, 52825293 (2004).
  • Lenzmann, F. O., B. C. O. O'Regan, J. J. T. Smits, H. P. C. E. Kuipers, P. M. Sommeling, L. H. Slooff and J. A. M. van Roosmalen, “Dye Solar Cells Without Electrolyte or Hole-Transport Layers: A Feasibility Study of a Concept Based on Direct Regeneration of the Dye by Metallic Conductors,” Prog. Photovolt. Res. Appl. 13, 333340 (2005).
  • Lindstrom, H., E. Magnusson, A. Holmberg, S. Sodergren, S. E. Lindquist and A. Hagfeldt, “A New Method for Manufacturing Nanostructured Electrodes on Glass Substrates,” Sol. Energy Mater. Sol. Cells 73, 91101 (2002).
  • Nakade, S., Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, “Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells,” J. Phys. Chem. B 107, 86078611 (2004).
  • Nazeeruddin, M. K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, “Conversion of Light to Electricity by CIS-x2bis (2,2′-bipyridyl-4,4′-dicarboxylate) Ruthenium(II) Charge-Transfer Sensitizers (x = Cl, Br, I, CN, and SCN) on Nanocrystalline TiO2 Electrodes,” J. Am. Chem. Soc. 115, 63826390 (1993).
  • Ni, M., M. K. H. Leung, D. Y. C. Leung and K. Sumathy, “Theoretical Modeling of TiO2/TCO Interfacial Effect on Dye-Sensitized Solar Cell Performance,” Sol. Energy Mater. Sol. Cells 90, 20002009 (2006a).
  • Ni, M., M. K. H. Leung, D. Y. C. Leung and K. Sumathy, “An Analytical Study of Porosity Effect on Dye-Sensitized Solar Cell Performance,” Sol. Energy Mater. Sol. Cells 90, 13311344 (2006b).
  • O'Regan, B. and M. Gratzel, “Low Cost and Highly Efficient Solar Cells Based on the Sensitization of Colloidal Titanium Dioxide,” Nature 353, 737740 (1991).
  • Park, N. G., G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas and A. J. Frank, “Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4,” J. Phys. Chem. B 103, 33083314 (1999).
  • Park, N. G., J. van de Lagemaat and A. J. Frank, “Comparison of Dye-Sensitized Rutile and Anatase-Based TiO2 Solar Cells,” J. Phys. Chem. B 104, 89898994 (2000).
  • Pettersson, H., T. Gruszecki, L. H. Johansson and P. Johander, “Manufacturing Method for Monolithic Dye-Sensitized Solar Cells Permitting Long-Term Stable Low-Power Modules,” Sol. Energy Mater. Sol. Cells 77, 405413 (2003).
  • Pettersson, H., T. Gruszecki, R. Bernhard, L. Haggman, M. Gorlov, G. Boschloo, T. Edvinsson, L. Kloo and A. Hagfeldt, “The Monolithic Multicell: A Tool for Testing Material Components in Dye-Sensitized Solar Cells,” Prog. Photovolt. Res. Appl. 15, 113121 (2007).
  • Rau, U., G. Kron and J. H. Werner, “Reply to Comments on ‘Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar Cells-Comparison of Electrolyte and Solid-State Devices’, on the Photovoltaic Action in pn-Junction and Dye-Sensitized Solar Cells,” J. Phys. Chem. B 107, 1354713550 (2003).
  • Rothenberger, G., D. Fitzmaurice and M. Gratzel, “Optical Electrochemistry. 3. Spectroscopy of Conduction-Band Electrons in Transparent Metal-Oxide Semiconductor-Films-Optical Determination of the Flat-Band Potential of Colloidal Titanium-Dioxide Films,” J. Phys. Chem. 96, 59835986 (1992).
  • Ruile, S., O. Kohle, P. Pechy and M. Gratzel, “Novel Sensitisers for Photovoltaic Cells: Structural Variations of Ru(II) Complexes Containing 2,6-bis(1-methylbenzimidazol-2-yl)Pyridine,” Inorganica Chim. Acta 261, 129140 (1997).
  • Saito, Y., S. Kambe, T. Kitamura, Y. Wada and S. Yanagida, “Morphology Control of Mesoporous TiO2 Nanocrystalline Films for Performance of Dye-Sensitized Solar Cells,” Sol. Energy Mater. Sol. Cells 83, 113 (2004).
  • Sastrawan, R., J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Petrat, A. Prodi-Schwab, P. Lechner and W. Hoffmann, “New Interdigital Design for Large Area Dye Solar Modules Using a Lead-Free Glass Frit Sealing,” Prog. Photovolt. Res. Appl. 14, 697709 (2006).
  • Sodergren, S., A. Hagfeldt, J. Olsson and S. E. Lindquist, “Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor-Films in Photoelectrochemical Cells,” J. Phys. Chem. 98, 55525556 (1994).
  • Srikanth, K., M. M. Rahman, H. Tanaka, K. M. Krishna, T. Soga, M. K. Mishra, T. Jimbo and M. Umeno, “Investigation of the Effect of Sol Processing Parameters on the Photoelectrical Properties of Dye-Sensitized TiO2 Solar Cells,” Sol. Energy Mater. Sol. Cells 65, 171177 (2001).
  • van de Lagemaat, J., K. D. Benkstein and A. J. Frank, “Relation between Particle Coordination Number and Porosity in Nanoparticle Films: Implications to Dye-Sensitized Solar Cells,” J. Phys. Chem. B 105, 1243312436 (2001).
  • Wang, Z. S., F. Y. Li, C. H. Huang, L. Wang, M. Wei, L. P. Jin and N. Q. Li, “Photoelectric Conversion Properties of Nanocrystalline TiO2 Electrodes Sensitized with Hemicyanine Derivatives,” J. Phys. Chem. B 104, 96769682 (2000).