SEARCH

SEARCH BY CITATION

REFERENCES

  • Achilias, D. S. and C. Kiparissides, “Development of a General Mathematical Framework for Modeling Diffusion-Controlled Free-Radical Polymerization Reactions,” Macromolecules 25(14), 37393750 (1992).
  • Adamson, A. W., “Physical Chemistry of Surfaces,” Wiley, New York (1976).
  • Alexopoulos, A. I. and C. Kiparissides, “Part II: Dynamic Evolution of the Particle Size Distribution in Particulate Processes Undergoing Simultaneous Particle Nucleation, Growth and Aggregation,” Chem. Eng. Sci. 60, 41574169 (2005).
  • Alexopoulos, A. H., A. I. Roussos and C. Kiparissides, “Part I: Dynamic Evolution of the Particle Size Distribution in Particulate Processes Undergoing Combined Particle Growth and Aggregation,” Chem. Eng. Sci. 59, 57515769 (2004).
  • Alvarez, J., J. Alvarez and M. Hernansez, “A Population Balance Approach for the Description of the Particle Size Distribution in Suspension Polymerization Reactors,” Chem. Eng. Sci. 49, 99113 (1994).
  • Batterham, R. J., J. S. Hall and G. Barton, “Pelletizing Kinetics and Simulation for Full-Scale Balling Circuits,” In “Proc. 3rd Int. Symp. Agg., Nur.,” West Germany, A136 (1981).
  • Bleck, R., “A Fast, Approximate Method for Integrating the Stochastic Coalescence Equation,” J. Geoph. Res. 75, 51655171 (1970).
  • Box, G. E. P. and M. Muller, “A Note on the Generation of Random Normal Deviates,” Ann. Math. Stat. 29, 610611 (1958).
  • Brandrup, J. and E. H. Immergut, “Polymer Handbook,” 3rd ed. John Wiley & Sons, New York (1989).
  • Chatzi, E. G. and C. Kiparissides, “Dynamic Simulation of Bimodal Drop Size Distributions in Low-Coalescence Batch Dispersion Systems,” Chem. Eng. Sci. 47, 445456 (1992).
  • Chatzi, E. G., A. D. Gavrielides and C. Kiparissides, “Generalized Model for Prediction of the Steady-State Drop Size Distribution in Batch Stirred Vessel,” Ind. Eng. Chem. Res. 28, 17041711 (1989).
  • Chen, M. Q., C. Hwang and Y. P. Shih, “A Wavelet-Galerkin Method for Solving Population Balance Equations,” Comp. Chem. Eng. 20(2), 131145 (1996).
  • Coulaloglou, C. A. and L. L. Tavlarides, “Description of Interaction Processes in Agitated Liquid-Liquid Dispersions,” Chem. Eng. Sci. 32, 12891297 (1977).
  • Dafniotis, P., “Modeling of Emulsion Copolymerization Reactors Operating Below the Critical Micelle Concentration,” Ph.D. Thesis, University of Wisconsin, Madison, WI (1996).
  • Debry, E., B. Sportisse and B. Jourdain, “A Stochastic Approach for the Numerical Simulation of the General Dynamics Equation for Aerosols,” J. Comp. Phys. 184, 649669 (2003).
  • Domilovskii, E. R., A. A. Lushnikov and V. N. Piskunov, “A Monte Carlo Simulation of Coagulation Processes,” Izvestiya Akademii Nauk SSSR, Fizika Atmsfery I Okeana 15, 194201 (1979).
  • Efendiev, Y. and M. R. Zachariah, “Hydrid Monte Carlo Method for Simulation of Two-Component Aerosol Coagulation and Phase Segregation,” J. Coll. Interf. Sci. 249, 3043 (2002).
  • Garcia, A. L., C. van de Broek, M. Aertsens and R. Serneels, “A Monte Carlo Simulation of Coagulation,” Physica 143(3), 535546 (1987).
  • Gelbard, F. and J. H. Seinfeld, “Exact Solution of the General Dynamic Equation for Aerosol Growth by Condensation,” J. Coll. Interf. Sci. 68(1), 173183 (1979).
  • Gelbard, F. and J. H. Seinfeld, “Simulation of Multicomponent Aerosol Dynamics,” J. Coll. Interf. Sci. 78(2), 485501 (1980).
  • Hamielec, A. E. and H. Tobita, “Polymerization processes,” In: “Ulmann's Encycl. Ind. Chem.,” Vol. A21. CVH Publishers, New York (1992), pp. 305428.
  • Hidy, G. M., “On the Theory of the Coagulation of Noninteracting Particles in Brownian Motion,” J. Coll. Sci. 20, 123144 (1965).
  • Hinze, J. O., “Turbulence,” McGraw-Hill, New York (1959).
  • Hounslow, M. J., R. L. Ryall and V. R. Marshall, “Discretized Population Balance for Nucleation, Growth, and Aggregation,” AIChE J. 34(11), 18211832 (1988).
  • Jahanzad, F., S. Sajjadi and B. W. Brooks, “Comparative Study of Particle Size in Suspension Polymerization and Corresponding Monomer-Water Dispersion,” Ind. Eng. Chem. Res. 44, 41124119 (2005).
  • Kiparissides, C., “Polymerization Reactor Modeling: A Review of Recent Developments and Future Directions,” Chem. Eng. Sci. 51, 16371659 (1996).
  • Kiparissides, C., A. Alexopoulos, A. Roussos, G. Dompazis and C. Kotoulas, “Population Balance Modeling of Particulate Polymerization Processes,” Ind. Eng. Chem. Res. 43, 72907302 (2004).
  • Kostoglou, M. and A. J. Karabelas, “Evaluation of Zero Order Methods for Simulating Particle Coagulation,” J. Coll. Interf. Sci. 163, 420431 (1994).
  • Kostoglou, M. and A. J. Karabelas, “Evaluation of Numerical Methods for Simulating an Evolving Particle Size Distribution in Growth Processes,” Chem. Eng. Commun. 136, 177199 (1995).
  • Kotoulas, C., “Prediction of the Particle Size Distribution in Suspension Polymerization Reactions,” PhD Thesis, Aristotle University of Thessaloniki (2006).
  • Kotoulas, C. and C. Kiparissides, “A Generalized Population Balance Model for the Prediction of Particle Size Distribution in Suspension Polymerization Reactors,” Chem. Eng. Sci. 61, 332346 (2006).
  • Kruis, F. E., A. Maisels and H. Fissan, “Direct Simulation Monte Carlo Method for Particle Coagulation and Aggregation,” AIChE J. 46(9), 17351742 (2000).
  • Kumar, S. and D. Ramkrishna, “On the Solution of Population Balance Equations by Discretizations. I. A Fixed Pivot Technique,” Chem. Eng. Sci. 51(8), 13111332 (1996a).
  • Kumar, S. and D. Ramkrishna, “On the Solution of Population Balance Equations by Discretizations. II. A Moving Pivot Technique,” Chem. Eng. Sci. 51(8), 13331342 (1996b).
  • Landgrebe, J. D. and S. E. Pratsinis, “A Discrete-Sectional Model for Powder Production by Gas-Phase Chemical Reaction and Aerosol Coagulation in the Free-Molecular Regime,” J. Coll. Interf. Sci. 139(1), 6386 (1990).
  • Liffman, K., “A Direct Simulation Monte Carlo Method for Cluster Coagulation,” J. Comp. Phys. 100, 116127 (1992).
  • Litster, J. D., D. J. Smit and M. J. Hounslow, “Adjustable Discretized Population Balance for Growth and Aggregation,” AIChE J. 41, 591603 (1995).
  • Maggioris, D., A. Goulas, A. H. Alexopoulos, E. G. Chatzi and C. Kiparissides, “Prediction of Particle Size Distribution in Suspension Polymerization Reactors: Effect of Turbulence Nonhomogeneity,” Chem. Eng. Sci. 55, 46114627 (2000).
  • Maisels, A., F. E. Kruis and H. Fissan, “Direct Simulation Monte Carlo for Simultaneous Nucleation, Coagulation, and Surface Growth in Dispersed Systems,” Chem. Eng. Sci. 59, 22312239 (2004).
  • Marchal, P., R. David, J. P. Klein and J. Villermaux, “Crystallization and Precipitation Engineerings. I. An Efficient Method for Solving Population Balance in Crystallization with Agglomeration,” Chem. Eng. Sci. 43(1), 5967 (1988).
  • Meimaroglou, D., A. I. Roussos and C. Kiparissides, “Part IV: Dynamic Evolution of the Particle Size Distribution in Particulate Processes. A Comparative Study between Monte Carlo and the Generalized Method of Moments,” Chem. Eng. Sci. 61, 56205635 (2006).
  • Meimaroglou, D., A. Krallis, V. Saliakas and C. Kiparissides, “Prediction of the Bivariate Molecular Weight—Long Chain Branching Distribution in Highly Branched Polymerization Systems Using Monte Carlo and Sectional Grid Methods,” Macromolecules 40, 22242234 (2007).
  • Narsimhan, G., G. Gupta and D. Ramkrishna, “A Model for Translational Breakage Probability of Droplets in Agitated Lean Liquid-Liquid Dispersions”, Chem. Eng. Sci. 34, 257265 (1979).
  • Nicmanis, M. and M. J. Hounslow, “A Finite Element Analysis of the Steady-State Population Balance Equation for Particulate Systems: Aggregation and Growth,” Chem. Eng. Sci. 20, S261S266 (1996).
  • Nicmanis, M. and M. J. Hounslow, “Finite-Element Methods for Steady-State Population Balance Equations,” AIChE J. 44, 22582272 (1998).
  • Ramkrishna, D., “Analysis of Population Balance IV. The Precise Connection Between Monte Carlo and Population Balances,” Chem. Eng. Sci. 36, 12031209 (1981).
  • Ramkrishna, D., “The Status of Population Balances,” Rev. Chem. Eng. 3(1), 4995 (1985).
  • Ranz, W. E. and W. R. Marshall, “Evaporation from Drops,” Chem. Eng. Prog. 48, 173180 (1952).
  • Roussos, A. I., A. H. Alexopoulos and C. Kiparissides, “Part III: Dynamic Evolution of the Particle Size Distribution in Batch and Continuous Particulate Processes: A Galerkin on Finite Elements Approach,” Chem. Eng. Sci. 60, 69987010 (2005).
  • Sastry, K. V. S. and P. Gaschignard, “Discretization Procedure for the Coalescence Equation of Particulate Processes,” Ind. Eng. Chem. Fund. 20, 355361 (1981).
  • Shah, B. H. J. D. Borwanker and D. Ramkrishna, “Simulation of Particulate Systems Using the Concept of the Interval of Quiescence,” AIChE J. 23, 897904 (1977).
  • Shinnar, R., “On the Behaviour of Liquid Dispersions in Mixing Vessels,” J. Fluid Mech. 10, 259275 (1961).
  • Smith, M. and T. Matsoukas, “Constant-Number Monte Carlo Simulation of Population Balances,” Chem. Eng. Sci. 53(9), 17771786 (1998).
  • Song, Y., M. Mathias, D. Tremblay and C. C. Chen, “Liquid Viscosity Model for Polymer Solutions and Mixtures,” Ind. Eng. Chem. Res. 42, 24152422 (2003).
  • Sovova, H., “Breakage and Coalescence of Drops in a Batch Stirred Vessel. II. Comparison of Model and Experiments,” Chem. Eng. Sci. 36, 15671573 (1981).
  • Spielman, L. A. and O. Levenspiel, “A Monte Carlo Treatment of Reacting and Coalescing Dispersed Phase Systems,” Chem. Eng. Sci. 20, 247254 (1965).
  • Tandon, P. and D. E. Rosner, “Monte Carlo Simulation of Particle Aggregation and Simultaneous Restructuring,” J. Coll. Interf. Sci. 213, 273286 (1999).
  • Yuan, H. G., G. Kalfas and W. H. Ray, “Suspension Polymerization,” JMS-Rev Macromol. Chem. Phys. C31, 215299 (1991).
  • Zhao, H., A. Maisels, T. Matsoukas and C. Zheng, “Analysis of Four Monte Carlo Methods for the Solution of Population Balances in Dispersed Systems,” Powder Techn. 173, 3850 (2007).