SEARCH

SEARCH BY CITATION

REFERENCES

  • Andrieu, C., A. Doucet, S. S. Singh and V. B. Tadic, “Particle Methods for Change Detection, System Identification, and Control,” Proc. IEEE 92(3), 423438 (2004).
  • Bard, Y., “Nonlinear Parameter Estimation,” Academic Press, Inc., New York (1974).
  • Bates, D. M. and D. G. Watts, “Nonlinear Regression Analysis and its Applications,” John Wiley and Sons, Inc., New York (1988).
  • Biegler, L. T., “Short Note Solution of Dynamic Optimization Problems by Successive Quadratic Programming and Orthogonal Collocation,” Comput. Chem. Eng. 8, 243248 (1984).
  • Biegler, L. T. and I. E. Grossman, “Retrospective on Optimization,” Comput. Chem. Eng. 28, 11691192 (2004).
  • Bock, H. G., “Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics,” in KH, Ebert, P, Deuflhard and W, Jäger, Eds., “Modelling of Chemical Reaction Systems,” Springer (1981), pp. 102125 (Chapt. 8).
  • Bock, H. G., “Recent Advances in Parameter Identification for Ordinary Differential Equations,” in P.Deuflhard and E.Hairer, Eds., “Progress in Scientific Computing,” Birkhäuser (1983), pp. 95121.
  • de Boor, C., “A Practical Guide to Splines,” Springer, New York (2001).
  • Dee, D. P., “On-Line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation,” Mon. Weather Rev. 123(4), 11281145 (1995).
  • Dee, D. P. and A. M. Da Silva, “Maximum-Likelihood Estimation of Forecast and Observation Error Covariance Parameters. Part I: Methodology,” Mon. Weather Rev. 127(8), 18221834 (1999).
  • Evensen, G., “The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation,” Ocean Dyn. 53, 343367 (2003).
  • Gong, J., G. Wahba, D. R. Johnson and J. Tribbia, “Adaptive Tuning of Numerical Weather Prediction Models: Simultaneous Estimation of Weighting, Smoothing, and Physical Parameters,” Mon. Weather Rev. 126, 210231 (1998).
  • Goodwin, G. C. and J. C. Aguero, “Approximate EM Algorithms for Parameter and State Estimation in Nonlinear Stochastic Models,” Proc. IEEE Conf. Dec. Cont. 368373 (2005).
  • Heald, J. P. M. and J. Stark, “Estimation of Noise Levels for Models of Chaotic Dynamical Systems,” Phys. Rev. Lett. 84, 23662369 (2000).
  • Jazwinski, A. H., “Stochastic Processes and Filtering Theory,” Academic Press, New York (1970).
  • Julier, S. J. and J. K. Uhlmann, “Unscented Filtering and Nonlinear Estimation,” Proc. IEEE 92(3), 401422 (2004).
  • Kloeden, P. E. and E. Platen, “Numerical Solution of Stochastic Differential Equations,” Springer-Verlag (1992).
  • Kristensen, N. R., H. Madsen and S. B. Jorgensen, “Continuous Time Stochastic Modelling-CSTM 2.3,” Technical University of Denmark, Lyngby, Denmark (2003).
  • Kristensen, N. R., H. Madsen and S. B. Jorgensen, “Parameter Estimation in Stochastic Grey-Box Models,” Automatica 40, 225237 (2004).
  • Mackay, D. J. C., “Information Theory, Inference, and Learning Algorithms,” version 7, Cambridge University Press (2004).
  • Marlin, T. E., “Process Control: Designing Processes and Control Systems for Dynamic Performance,” 2nd ed., McGraw-Hill, New York (2000).
  • Maybeck, P. S., “Stochastic Models, Estimation, and Control,” Vol. 1, Academic Press, New York (1979).
  • Maybeck, P. S., “Stochastic Models, Estimation, and Control,” Vol. 2, Academic Press, New York (1982).
  • Nielsen, J. N., H. Madsen and P. C. Young, “Parameter Estimation in Stochastic Differential Equations: An Overview,” Ann. Rev. Cont. 24, 8394 (2000).
  • Ogunnaike, B. A. and W. H. Ray, “Process Dynamics, Modeling and Control,” Oxford University Press, New York (1994).
  • Poyton, A., “Application of principal differential analysis to parameter estimation in fundamental dynamic models,” M.Sc. Thesis, Queen's University, Kingston, Ontario, Canada (2005).
  • Poyton, A. A., M. S. Varziri, K. B. McAuley, P. J. McLellan and J. O. Ramsay, “Parameter Estimation in Continuous-Time Dynamic Models Using Principal Differential Analysis,” Comp. Chem. Eng. 30, 698708 (2006).
  • Ramsay, J. O. and B. W. Silverman, “Functional Data Analysis,” 2nd ed., Springer, New York (2005).
  • Ramsay, J. O., G. Hooker, D. Campbell and J. Cao, “Parameter Estimation for Differential Equations: A Generalized Smoothing Approach,” J.R. Stat. Soc. Series B (Stat. Methodol.) 69(5), 741796 (2007).
  • Roweis, S. and Z. Ghahramani, “Learning Nonlinear Dynamical Systems Using the Expectation-Maximization Algorithm,” in S.Haykin, Ed., “Kalman Filtering and Neural Networks,” John Wiley & Sons, New York (2001), pp. 175220.
  • Seber, G. A. F. and C. J. Wild, “Nonlinear Regression,” John Wiley and Sons, Inc., New York (1989).
  • Shumway, R. H. and D. S. Stoffer, “Time Series Analysis and its Applications,” Springer, New York (2000).
  • Solari, M. E., “The Maximum Likelihood Solution of the Problem of Estimating a Linear Functional Relationship,” J. Roy. Statist. Soc. B 31, 372375 (1969).
  • Solo, V., “A sure-fired way to choose smoothing parameters in ill-conditioned inverse problems,” In Proc. IEEE ICIP96.IEEE, IEEE press (1996), pp. 8992.
  • Varziri, M. S., K. B. McAuley and P. J. McLellan, “Parameter Estimation in Continuous-Time Dynamic Models in the Presence of Unmeasured States and Non-Stationary Disturbances”, Ind. Eng. Chem. Res. 47(2), 380393 (2008).
  • Varziri, M. S., A. Poyton, K. B. McAuley, P. J. McLellan and J. O. Ramsay, “Selecting Optimal Weighting Factors in iPDA for Parameter Estimation in Continuous-Time Dynamic Models”, Comp. Chem. Eng. 2008a (in press, DOI: 10.1016/j.compchemeng.2008.04.005).
  • Varziri, M. S., K. B. McAuley and P. J. McLellan, “Approximate Maximum Likelihood Parameter Estimation for Nonlinear Dynamic Models: Application to a Lab-Scale Nylon Reactor Model”, Ind. Eng. Chem. Res. 2008b (in press, DOI: 10.1021/ie800503v).
  • Voss, H. U., J. Timmer and J. Kurths, “Nonlinear Dynamical System Identification From Uncertain and Indirect Measurements,” Int. J. Bifur. Chaos. 14(6), 19051933 (2004).
  • Wächter, A. and L. T. Biegler, “On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming,” Math. Prog. 106(1), 2557 (2006).
  • Warnes, J. J. and B. D. Ripley, “Problems With Likelihood Estimation of Covariance Functions of Spatial Gaussian Processes,” Biometrika 74(3), 640642 (1987).
  • Yeredor, A., “The Joint MAP-ML Criterion and its Relation to ML and Extended Least-Squares,” IEEE Trans. Signal Process. 48(12), 34843492 (2000).