Get access

Turbulence structure for plane Poiseuille–Couette flow and implications for drag reduction over surfaces with slip

Authors

  • Nicholas B. Spencer,

    1. School of Chemical, Biological and Materials Engineering, The University of Oklahoma, 100 East Boyd St., SEC T-335, Norman, Oklahoma 73019, U.S.A.
    Search for more papers by this author
  • Lloyd L. Lee,

    1. Chemical and Materials Engineering, California State University, Pomona, California, U.S.A.
    Search for more papers by this author
  • Ramkumar N. Parthasarathy,

    1. School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma, U.S.A.
    Search for more papers by this author
  • Dimitrios V. Papavassiliou

    Corresponding author
    1. School of Chemical, Biological and Materials Engineering, The University of Oklahoma, 100 East Boyd St., SEC T-335, Norman, Oklahoma 73019, U.S.A.
    2. Sarkeys Energy Center, The University of Oklahoma, Norman, Oklahoma, U.S.A.
    • School of Chemical, Biological and Materials Engineering, The University of Oklahoma, 100 East Boyd St., SEC T-335, Norman, Oklahoma 73019, U.S.A.
    Search for more papers by this author

Abstract

Direct numerical simulations were used to simulate plane channel and plane Poiseuille–Couette flows. For Poiseuille–Couette flow, the walls of the channel were moving with a specified velocity. This is equivalent to forcing a slip velocity at the wall of the channel, and such flow behaviour can be viewed as the effect due to an ultra-hydrophobic wall. It was found that the location of the zero Reynolds stress value shifted towards the wall moving in the streamwise direction. The near-wall eddies were found to be longer and weaker than for the plane-Poiseuille channel flow. It appears that such an eddy structure can lead to turbulence drag reduction.

Abstract

On a utilisé des simulations numériques directes afin de simuler l'écoulement en canal plan et l'écoulement en canal plan Poiseuille-Couette. Pour l'écoulement de Poiseuille-Couette, les parois du canal se déplacent avec une vitesse spécifiée. Cela revient à forcer une vitesse de glissement à la paroi du canal, et un tel comportement d'écoulement peut être vu comme étant l'effet de la paroi ultra-hydrophobe. On a trouvé que l'emplacement de la valeur nulle de la contrainte de Reynolds se déplaçait vers la paroi dans le sens du courant. On a trouvé que les tourbillons près des parois étaient plus longs et plus faibles que dans le cas de l'écoulement à canal plan de Poiseuille. Il semble qu'une telle structure tourbillonnaire puisse mener à la réduction de la traînée turbulente.

Get access to the full text of this article

Ancillary