Thermodynamic, hydrodynamic, particle dynamic, and experimental analyses of silica nanoparticles synthesis in diffusion flame

Authors

  • R. Y. Hong,

    Corresponding author
    1. Chemical Engineering Department, Soochow University, SIP, Suzhou 215123, China
    2. Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123, China
    3. State Key Laboratory of Multiphase Reaction, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China
    • Chemical Engineering Department, Soochow University, SIP, Suzhou 215123, China.
    Search for more papers by this author
  • B. Feng,

    1. Chemical Engineering Department, Soochow University, SIP, Suzhou 215123, China
    2. Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123, China
    Search for more papers by this author
  • Z. Q. Ren,

    1. Chemical Engineering Department, Soochow University, SIP, Suzhou 215123, China
    2. Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123, China
    Search for more papers by this author
  • B. Xu,

    1. Suzhou Nanotec Co., Ltd., SIP, Suzhou 215123, China
    Search for more papers by this author
  • H. Z. Li,

    1. State Key Laboratory of Multiphase Reaction, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China
    Search for more papers by this author
  • Y. Zheng,

    1. Department of Chemical Engineering, University of New Brunswick, Fredericton, N.B., Canada E3B 5A3
    Search for more papers by this author
  • J. Ding,

    1. MSC Software, 2 MacArthur Place, Santa Ana, CA 92707, U.S.A.
    Search for more papers by this author
  • D. G. Wei

    1. Center for Nanoscale Systems, School of Engineering & Applied Science, Harvard University, 11 Oxford St., Cambridge, MA 02139, U.S.A.
    Search for more papers by this author

Abstract

Using silicon tetrachloride as a precursor, the silica nanoparticles (NPs) were synthesized in the diffusion flame of air and liquid petrol gas (LPG). Different effects on flame shape and temperature, silicon tetrachloride conversion, major gas-phase compositions, and diameter of silica NPs were obtained via thermodynamic, hydrodynamic, or particle-dynamic approaches. The size of silica NPs decreased with the increasing air-flow rate, increased with the increasing LPG flow rate, and increased obviously with the increasing evaporator temperature. The size of the synthesized silica NPs is about 25–30 nm at an optimal condition.

Abstract

À l'aide de tétrachlorure de silicone comme précurseur, des nanoparticules de silice (NP) ont été synthétisées dans une flamme diffusante d'air et de gaz de pétrole liquéfié (LPG). Les effets de la forme et de la température de flamme, de la conversion de tétrachlorure de silicone, de la composition de la phase gazeuse et du diamètre des nanoparticules de silice, ont été obtenus par des méthodes de thermodynamique, d'hydrodynamique ou de dynamique particulaire. La taille des NP de silice diminue avec l'augmentation du débit d'air, augmente avec le débit de LPG et augmente de façon évidente avec la température de l'évaporateur. La taille des NP de silice synthétisées est d'environ 25–30 nm pour une condition optimale.

Ancillary