Get access

Porous polymer monolith templated by small polymer molecules

Authors

  • Zhiwang Wu,

    1. Department of Chemical and Biomolecular Engineering, Tulane Institute for Macromolecular Engineering and Science (TIMES), Tulane University, New Orleans, Louisiana 70118
    Search for more papers by this author
  • Kyle J. Frederic,

    1. Department of Chemical and Biomolecular Engineering, Tulane Institute for Macromolecular Engineering and Science (TIMES), Tulane University, New Orleans, Louisiana 70118
    Search for more papers by this author
  • Mark Talarico,

    1. Micromeritics Instrument Corporation, One Micromeritics Drive, Norcross, Georgia 30093
    Search for more papers by this author
  • Daniel De Kee

    Corresponding author
    1. Department of Chemical and Biomolecular Engineering, Tulane Institute for Macromolecular Engineering and Science (TIMES), Tulane University, New Orleans, Louisiana 70118
    • Department of Chemical and Biomolecular Engineering, Tulane Institute for Macromolecular Engineering and Science (TIMES), Tulane University, New Orleans, Louisiana 70118.
    Search for more papers by this author

Abstract

Porous poly(ethylene glycol) diacrylate (PEGDA) monoliths have been prepared by UV-initiated polymerization of PEGDA oligomer (Mn = 700 g/mol). In the mean time, the addition of hydrophobic poly(propylene oxide) (PPO, Mn = 725 g/mol) as porogen into an ethanol solution of PEGDA oligomer to form a homogenous mixture, causes a phase separation between PPO and PEGDA following removal of ethanol by UV heating. Porous PEGDA monolith was prepared by immediate heating at 300°C to remove PPO molecules from the as-synthesized PEGDA/PPO hybrid. The micrometer pores of the PEGDA monolith have relatively concentrated pore size distribution according to the mercury intrusion porosimetry results and field emission scanning electron microscopy (FE-SEM).

Abstract

On a préparé des monolithes poreux de polyéthylène glycol diacrylate (PEGDA) au moyen de la polymérisation déclenchée par des UV d'oligomère de PEGDA (Mn = 700 g/mole). Entre-temps, l'ajout d'oxyde de polypropylène hydrophobe (OPP, Mn = 725 g/mole) comme agent porogène dans une solution d'éthanol d'oligomère de PEGDA afin de former un mélange homogène cause une séparation de phases entre l'OPP et le PEGDA après l'élimination de l'éthanol par chauffage aux UV. On a préparé le monolithe poreux de PEGDA en ayant recours au chauffage immédiat à 300°C afin d'éliminer les molécules d'OPP de l'hybride de PEGDA/OPP synthétisé. Les pores du micromètre du monolithe de PEGDA ont une distribution de la taille des pores relativement concentrée selon les résultats de la porosimétrie de l'intrusion de mercure et de la microscopie électronique à balayage à émission de champ (CFE-SEM).

Ancillary