Get access

Steam methane reforming in a Ni/Al2O3 catalyst: Kinetics and diffusional limitations in extrudates

Authors

  • Eduardo L. G. Oliveira,

    1. LSRE, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
    Search for more papers by this author
  • Carlos A. Grande,

    1. LSRE, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
    Search for more papers by this author
  • Alírio E. Rodrigues

    Corresponding author
    1. LSRE, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
    • LSRE, Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
    Search for more papers by this author

Abstract

The true kinetics of methane steam reforming was measured in powder of Ni/Al2O3 catalyst (“Octolyst 1001” from Degussa) at different temperatures (733–890 K) for several operating conditions. New reaction rate constants were determined for this catalyst. The observed reaction rate was measured on catalyst extrudates to determine diffusion effects within the porous structure of the particle. A non-isothermal model with diffusion was used to determine effectiveness factors for each reaction. The objective was to measure all necessary data to model the performance of the catalyst in a Sorption Enhanced Reaction Process (SERP) for H2 production with in situ CO2 capture.

Abstract

On a mesuré la cinétique réelle du reformage à la vapeur de méthane sur un catalyseur Ni/Al2O3 sous forme de poudre (« Octolyst 1001 » de Degussa) à différentes températures (733–890 K) dans plusieurs conditions d'exploitation. De nouvelles constantes de vitesse de réaction ont été déterminées pour ce catalyseur. On a mesuré la vitesse de réaction observée sur des extrudats de catalyseur pour déterminer les effets de diffusion à l'intérieur de la structure poreuse de la particule. On a utilisé un modèle non isothermique avec diffusion pour déterminer les facteurs d'efficacité de chaque réaction. L'objectif consistait à mesurer toutes les données nécessaires pour modéliser la performance du catalyseur dans un procédé de réaction améliorée de sorption pour la production de H2 avec captage in-situ de CO2.

Ancillary