Get access
Advertisement

Hydrotreating of light gas oil using carbon nanotube supported NiMoS catalysts: Kinetic modelling

Authors

  • S. Sigurdson,

    1. Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A9
    Search for more papers by this author
  • A. K. Dalai,

    Corresponding author
    1. Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A9
    • Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A9.
    Search for more papers by this author
  • J. Adjaye

    1. Syncrude Edmonton Research Centre, Edmonton, AB, Canada T6N 1H4
    Search for more papers by this author

Abstract

Multi-walled carbon nanotubes (MWCNTs) were applied as supports for NiMo hydroprocessing catalysts. Rate expressions were developed for an optimum NiMo/MWCNT catalyst to help predict its hydrodesulfurisation (HDS) and hydrodenitrogenation (HDN) activities while varying the operation parameters for coker light gas oil treatment. Power law models were best fit with reaction orders of 2.6 and 1.2, and activation energies of 161 and 82.3 kJ/mol, for the HDS and HDN reactions, respectively. Generalised Langmuir–Hinshelwood models were found to have reaction orders of 3.0 and 1.5, and activation energies of 155 and 42.3 kJ/mol, for the HDS and HDN reactions, respectively.

Étude des nanotubes de carbone multiparois (MWCNT) lorsqu'ils servent de supports aux catalyseurs d'hydrotraitement NiMo. Des expressions de vitesse ont été développées pour un catalyseur NiMo/MWCNT optimal pour prédire ses activités d'hydrodésulfurisation (HDS) et d'hydrodénitrogénation (HDN) tout en faisant varier les paramètres d'exploitation pour le traitement du gas-oil léger de cokéfaction. Les modèles de loi de puissance sont les mieux adaptés avec des ordres de réaction de 2,6 et 1,2 et des énergies d'activation de 161 kJ/mol et 82,3 kJ/mol pour les réactions d'HDS et d'HDN respectivement. Les modèles généralisés de Langmuir–Hinshelwood ont des ordres de réaction de 3,0 et 1,5 et des énergies d'activation de 155 kJ/mol et 42,3 kJ/mol pour les réactions d'HDS et d'HDN respectivement. © 2010 Canadian Society for Chemical Engineering

Get access to the full text of this article