Mixed convection flows in a square lid-driven cavity with heat source at the bottom utilising nanofluid



This paper presents a numerical investigation of laminar mixed convection cooling of heat source embedded on the bottom wall of an enclosure filled with nanofluids. The transport equations for a Newtonian fluid are solved numerically with a finite volume approach using the SIMPLE algorithm. The influences of governing parameters, namely, Rayleigh number location and geometry of the heat source, the type of nanofluid and solid volume fraction of nanoparticles on the cooling performance is studied. The present results are validated by favourable comparisons with previously published results. The results of the problem are presented in graphical and tabular forms and discussed. © 2011 Canadian Society for Chemical Engineering