Get access

Ultrapyrolysis of automobile shredder residue

Authors

  • Z. Shen,

    1. Institute for Environmental Research and Technology, National Research Council Canada, Montreal Road, Ottawa, Ontario, Canada K1A 0R6
    Search for more papers by this author
  • M. Day,

    Corresponding author
    1. Institute for Environmental Research and Technology, National Research Council Canada, Montreal Road, Ottawa, Ontario, Canada K1A 0R6
    • Institute for Environmental Research and Technology, National Research Council Canada, Montreal Road, Ottawa, Ontario, Canada K1A 0R6
    Search for more papers by this author
  • J. D. Cooney,

    1. Institute for Environmental Research and Technology, National Research Council Canada, Montreal Road, Ottawa, Ontario, Canada K1A 0R6
    Search for more papers by this author
  • G. Lu,

    1. Department of Chemical and Biochemical Engineering, Faculty of Engineering Science, The University of Western Ontario, London, Ontario, Canada N6A 5B9
    Search for more papers by this author
  • C. L. Briens,

    1. Department of Chemical and Biochemical Engineering, Faculty of Engineering Science, The University of Western Ontario, London, Ontario, Canada N6A 5B9
    Search for more papers by this author
  • M. A. Bergougnou

    1. Department of Chemical and Biochemical Engineering, Faculty of Engineering Science, The University of Western Ontario, London, Ontario, Canada N6A 5B9
    Search for more papers by this author

  • Issued as NRCC #37586.

Abstract

A fast pyrolysis (Ultrapyrolysis) process was employed to convert automobile shredder residue (ASR) into chemical products. Experiments were conducted at atmospheric pressure and temperatures between 700 and 850°C with residence times between 0.3 and 1.4 seconds. Pyrolysis products included 59 to 68 mass% solid residue, 13 to 23 mass% pyrolysis gas (dry) and 4 to 12 mass% pyrolytic water from a feed containing 39 mass% organic matter and 2 mass% moisture. No measurable amounts of liquid pyrolysis oil were produced. The five most abundant pyrolysis gases, in vol%, were CO (18–29), CO2 (20–23), CH4 (17–22), C2H4 (20–22) and C3H6 (1–11), accounting for more than 90% of the total volume. The use of a higher organic content ASR feed (58 mass%) resulted in less solid residue and more pyrolysis gas. However, no significant changes were noted in the composition of the pyrolysis gas.

Abstract

On a utilisé un procédé de pyrolyse rapide (ultrapyrolyse) pour convertir les résidus des déchiqueteuses d'automobiles (ASR) en produits chimiques. Des expériences ont été menées à des pressions proches de la pression atmosphérique et à des températures comprises entre 700 et 850°C, les temps de séjour variant de 0,3 à 1,4 secondes. Les produits de pyrolyse comprennent de 59 à 68% en masse de résidus solides, de 13 à 23% en masse de gaz de pyrolyse (sec) et de 4 à 12% en masse d'eau pyrolytique, à partir d'une alimentation contenant 39% en masse de matière organique et 2% en masse d'humidité. On n'a pas produit de quantités mesurables d'huile de pyrolyse liquide. Les cinq gaz de pyrolyse les plus abondants, en pourcentage volumique, sont le CO (18–29), le CO2 (20–23), le CH4 (17–22), le C2H4 (20–22) et le C3H6 (1–11), qui comptent pour plus de 90% du volume total. L'utilisation d'une alimentation en ASR à forte teneur organique (58% en masse) donne moins de résidus solides et davantage de gaz pyrolitique. Cependant, aucun changement significatif n'est noté dans la composition du gaz de pyrolyse.

Get access to the full text of this article

Ancillary