Liquid phase residence time distribution for two phase flow in coiled tubes

Authors

  • A. K. Saxena,

    1. Technische Chemie, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
    Current affiliation:
    1. Indian Institute of Petroleum, Dehradun 248005, India
    Search for more papers by this author
  • K. D. P. Nigam,

    Corresponding author
    1. Technische Chemie, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
    Current affiliation:
    1. Department of Chemical Engineering, IIT, Hauz Khas, New Delhi 110 016, India
    • Technische Chemie, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
    Search for more papers by this author
  • A. Schumpe,

    1. Technische Chemie, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
    Current affiliation:
    1. Institut für Technische Chemie, Technische Universität Braunschweig. Hans-Sommer -str. 10, D-38106, Braunschweig, Germany
    Search for more papers by this author
  • W. D. Deckwer

    1. Technische Chemie, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
    Current affiliation:
    1. GBF, Mascheroder Weg 1, D-38124 Braunschweig, Germany
    Search for more papers by this author

Abstract

The residence time distribution (RTD) of the liquid phase in air-water flow through helical coils has been studied. Upward and downward cocurrent flows have been investigated in three coils with curvature ratios ranging from 11 to 60.7. The ranges of the Reynolds numbers for the gas and the liquid varied from 1500 to 3000 and 620 to 3200, respectively. A model has been proposed that describes the liquid phase RTD as combination of two different residence time distributions applicable for turbulent and laminar liquid flows.

Abstract

On a étudié la distribution du temps de séjour de la phase liquide dans l'écoulement air-eau dans des serpentins hélicoïdaux. Des écoulements à cocourant ascendant et descendant ont été examinés dans trois serpentins dont les rapports de courbure varient de 11 à 60,7. Les nombres de Reynolds varient de 1500 à 3000 pour le gaz et de 620 à 3200 pour le liquide. On propose un modèle qui décrit la distribution du temps de séjour en phase liquide comme une combinaison de deux distributions du temps de séjour différentes applicables à des écoulements liquides turbulents et laminaires.

Ancillary