Processing efficiency of immobilized non-growing bacteria: Biocatalytic modeling and experimental analysis

Authors

  • Jin-Woo Kim,

    1. Department of Agricultural Engineering, The Texas A&M University System, College Station, Texas 77843, USA
    2. Department of Biochemistry and Biophysics, The Texas A&M University System, College Station, Texas 77843, USA
    Search for more papers by this author
  • Cady R. Engler,

    Corresponding author
    1. Department of Agricultural Engineering, The Texas A&M University System, College Station, Texas 77843, USA
    • Department of Agricultural Engineering, The Texas A&M University System, College Station, Texas 77843, USA
    Search for more papers by this author
  • James R. Wild,

    1. Department of Biochemistry and Biophysics, The Texas A&M University System, College Station, Texas 77843, USA
    Search for more papers by this author
  • Evguenia I. Rainina

    1. Department of Biochemistry and Biophysics, The Texas A&M University System, College Station, Texas 77843, USA
    2. Pacific Northwest National Laboratory, P.O. Box 999/MS K2-21, Richland, WA 99352, USA
    Search for more papers by this author

Abstract

Modeling methods used to optimize the biocatalytic efficiency of freely suspended cells have been applied to non-growing microbial cells entrapped within a macro-porous carrier. The catalytic rate, which is dependent on cell concentration inside the biocatalyst beads, coincided with catalytic parameters for freely suspended cells. Immobilized non-growing cell systems could be optimized utilizing the characteristics of freely suspended cells without requiring extensive experimentation to define catalytic behaviour inside the biocatalyst. A dynamic diffusion–reaction model was developed and validated using experimental data for thiodiglycol degradation by Alcaligenes xylosoxidans subsp. xylosoxidans immobilized within macro-porous poly(vinyl alcohol) cryogel in a completely mixed batch bioreactor.

Abstract

Des mèthodes de modèlisation visant à optimiser l'efficacitè biocatalytique de cellules en suspension libre ont ètè appliquèes à des cellules microbiennes qui ne sont pas en croissance piègèes dans un support macro-poreux. La vitesse catalytique, qui est dèpendante de la concentration de cellules dans les billes de biocatalyseur, coincide avec les parameátres catalytiques pour les cellules en suspension libre. Des systeámes de cellules immobilisèes qui ne sont pas en croissance pourraient ětre immobilisès à l'aide des caractèristiques des cellules en suspension libre sans nècessiter une expèrimentation poussèe pour dèfinir le comportement catalytique dans le biocatalyseur. Un modeále de diffusion-rèaction dynamique a ètè mis au point et validè à l'aide de donnèes expèrimentales pour la dègradation du thiodiglycol par les xylosoxidans de la sous-espeáce Alcaligenes xylosoxidans immobilisès dans un cryogel de poly(alcool de vinyle) dans un rèacteur discontinu compleátement mèlangè.

Ancillary