Application of high-pressure swing adsorption process for improvement of CO2 recovery system from flue gas

Authors

  • Yukihiro Takamura,

    1. Department of Materials Science and Chemical Engineering, Shizuoka University, 3-5-1, Johoku, Hamamatsu, 432-8561 Japan
    2. Electrotechnology Applications R&D Center, Chubu Electric Power Co. Inc., 20-1, Kitasekiyama, Midori-ku, Nagoya, 459-8522 Japan
    Search for more papers by this author
  • Junya Aoki,

    1. Department of Materials Science and Chemical Engineering, Shizuoka University, 3-5-1, Johoku, Hamamatsu, 432-8561 Japan
    Search for more papers by this author
  • Shigeo Uchida,

    Corresponding author
    1. Department of Materials Science and Chemical Engineering, Shizuoka University, 3-5-1, Johoku, Hamamatsu, 432-8561 Japan
    • Department of Materials Science and Chemical Engineering, Shizuoka University, 3-5-1, Johoku, Hamamatsu, 432-8561 Japan
    Search for more papers by this author
  • Saburou Narita

    1. Electrotechnology Applications R&D Center, Chubu Electric Power Co. Inc., 20-1, Kitasekiyama, Midori-ku, Nagoya, 459-8522 Japan
    Search for more papers by this author

Abstract

Although the super cold separator applied to the system for CO2 recovery from flue gas can produce pure CO2 liquid, the CO2 recovery efficiency is low. Therefore, the addition of a PSA plant was considered for the secondary CO2 recovery from the noncon-densing gas to improve the efficiency. The PSA plant was operated for adsorption at the same pressure as that of the super cold separator and for desorption at the atmospheric pressure. From both the simulation and the experimental data, it was confirmed that CO2 could be concentrated from 50% in the noncondensing gas to 70% in the recovery gas by the PSA plant and the CO2 recovery efficiency of the plant was about 90%.

Abstract

Bien que le super séparateur froid appliqué au système de récupération du CO2 à partir de gaz de carneau puisse produire du liquide de CO2 pur, l'efficacité de la récupération du CO2 est faible. En conséquence, l'ajout d'une installation de type PSA a été considéré afin d'améliorer l'efficacité de la récupération secondaire du CO2 à partir du gaz non condensable. Cinstallation de PSA a été utilisée pour l'adsorption à la měme pression que celle du super séparateur froid et pour la désorption à la pression atmosphérique. La simulation et les données expérimentales permettent de confirmer que le CO2 pourrait ětre concentré dans une proportion allant de 50% dans le gaz non condensable à 70% dans le gaz de récupération par l'installation de PSA, et l'efficacité de la récupération de CO2 de cette installation est d'environ 90%.

Ancillary