Get access
Advertisement

Modeling the Injection of Gas-Liquid Jets into Fluidized Beds of Fine Particles

Authors

  • Siva Ariyapadi,

    1. Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9 Canada
    Search for more papers by this author
  • Franco Berruti,

    Corresponding author
    1. Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9 Canada
    • Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9 Canada
    Search for more papers by this author
  • Cedric Briens,

    1. Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9 Canada
    Search for more papers by this author
  • Peter Griffith,

    1. Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
    Search for more papers by this author
  • Craig Hulet

    1. Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9 Canada
    Search for more papers by this author

Abstract

Contacting of gas-liquid jets with particles/ catalyst is essential in many fluidization processes. This paper discusses a momentum conservation model to determine the entrainment rate of solids and gas into a gas-liquid jet, injected in a fluidized bed. A novel experimental technique developed by Felli (2002) is used to verify the model results. Correction factors to the initial momentum calculated from the homogenous model are addressed. The model predictions are in good agreement with the experimental data. The present model can be used to characterize the behaviour of gas-liquid jets (fine sprays) injected into fluidized beds of fine particles.

Abstract

Le contact des jets gaz-liquide avec des particules ou des catalyseurs est essentiel dans les procédés de fluidisation. On étudie dans cet article un modèle de conservation de la quantité de mouvement afin de déterminer la vitesse d'entraînement de solides et de gaz dans un jet gaz-liquide, injecté dans un lit fluidisé. On a recours à une nouvelle technique expérimentale mise au point par Felli (2002) pour vérifier les résultats du modèle. Les facteurs de correction pour la quantité de mouvement initial calculé à partir du modèle homogène sont examinés. Les prédictions du modèle montrent un bon accord avec les données expérimentales. Le présent modèle peut servir à caractériser le comportement de jets gaz-liquide (vaporisations fines) injectés dans des lits fluidisés de particules fines.

Get access to the full text of this article

Ancillary