SEARCH

SEARCH BY CITATION

Keywords:

  • modelling and simulation;
  • flow and pressure distribution;
  • plate and frame module design;
  • ultrafiltration

Abstract

Pressure and flow maldistributions were studied in a full-scale industrial plate and frame ultrafiltration module, operating in a Z flow pattern, for the recovery of used motor oils. Solutions were obtained using (1) a three-dimensional solution of the Navier-Stokes equation using computational fluid dynamics and (2) Bernoulli's equation and a momentum balance in one dimension. Fluid decelerations and accelerations generated pressure increases and decreases in the distributor and collector, respectively, biasing the flow distribution to the last channel. Several modifications to the original design were evaluated; the most effective was larger distributor and collector diameters, which greatly improved the uniformity of the flow distribution and transmembrane pressure, and reduced the overall pressure drop in a bank. A variable diameter distributor and collector module was designed using the 1-D model. Flow distribution was significantly improved but also yielded an undesirable overall higher pressure drop and a pressure maldistribution in the bank. The maldistribution of the main inlet manifold to the distributors in the first bank was strongly dependent on the module design. The flow distribution across the width of a channel became uniform within a short distance, essentially eliminating the need to consider this design aspect any further. Flows at the bank outlets, and hence inlets of the following bank, showed uniform lateral distribution in all cases, suggesting that future modelling work can be limited to a fraction of the module width, based on symmetry, in order to gain computational efficiency.

On a étudié les mauvaises distributions de pression et d'écoulement dans un module d'ultrafiltration à plateaux et à cadres à l'échelle industrielle, fonctionnant dans un schéma d'écoulement en Z, pour la récupération des huiles de moteurs usées. Des solutions ont été obtenues avec (1) une solution tridimensionnelle de l'équation de Navier-Stokes utilisant la mécanique des fluides par ordinateur, et (2) l'équation de Bernoulli et un bilan de quantité de mouvement unidimensionnel. Les décélérations et accélérations de fluide entraînent des augmentations et diminutions de pression dans le distributeur et le collecteur, respectivement, ce qui fausse la distribution d'écoulement dans le dernier canal. On a évalué plusieurs modifications du concept original; la plus efficace sont des diamètres de distributeur et de collecteur plus larges, qui permettent d'améliorer grandement l'uniformité de la distribution d'écoulement et la pression transmembranaire, et qui réduisent la perte de charge globale dans une batterie. Un module de distributeur et de collecteur de diamètres variables a été conçu au moyen du modèle 1D. La distribution d'écoulement est significativement améliorée mais cause une perte de charge globale plus grande indésirable et une mauvaise distribution de pression dans la batterie. La mauvaise distribution du manifold d'entrée principal vers les distributeurs dans la première batterie est fortement dépendante de la conception du module. La distribution d'écoulement dans toute la largeur d'un canal devient uniforme sur une courte distance, éliminant essentiellement le besoin d'approfondir cet aspect de la conception. L'écoulement en sortie de batteries et donc à l'entrée des batteries suivantes montre une distribution latérale uniforme dans tous les cas, ce qui suggère que le travail de modélisation futur peut se limiter à une fraction de la largeur du module, pour des raisons de symétrie, pour gagner de l'efficacité numérique.