SEARCH

SEARCH BY CITATION

Keywords:

  • Bagging;
  • discrete-time survival analysis;
  • maximum likelihood;
  • survival tree
  • MSC 2000: Primary 62N99;
  • secondary 62G08

Abstract

Tree-based methods are frequently used in studies with censored survival time. Their structure and ease of interpretability make them useful to identify prognostic factors and to predict conditional survival probabilities given an individual's covariates. The existing methods are tailor-made to deal with a survival time variable that is measured continuously. However, survival variables measured on a discrete scale are often encountered in practice. The authors propose a new tree construction method specifically adapted to such discrete-time survival variables. The splitting procedure can be seen as an extension, to the case of right-censored data, of the entropy criterion for a categorical outcome. The selection of the final tree is made through a pruning algorithm combined with a bootstrap correction. The authors also present a simple way of potentially improving the predictive performance of a single tree through bagging. A simulation study shows that single trees and bagged-trees perform well compared to a parametric model. A real data example investigating the usefulness of personality dimensions in predicting early onset of cigarette smoking is presented. The Canadian Journal of Statistics 37: 17-32; 2009 © 2009 Statistical Society of Canada

Arbres de survie à temps discret

Les méthodes d'arbres sont fréquemment utilisées lors d'études impliquant des données censurées. La structure d'un arbre ainsi que la facilité avec laquelle il peut être interprété font de lui un outil utile afin d'identifier des facteurs de pronostique et de prédire les probabilités de survie conditionnelles d'un individu étant donné ses covariables. Les méthodes existantes ont été développées pour traiter une variable temporelle continue. En pratique, il arrive fréquemment que la variable mesurant le temps de survie soit mesurée selon une échelle discrète. Les auteurs proposent une nouvelle méthode pour construire un arbre qui est spécialement adaptée aux variables de survie à temps discret. Le critère de division peut être vu comme étant une extension, au cas de censure à droite, du critère d'entropie pour une variable catégorielle. La sélection de l'arbre final est basée sur une méthode d'élagage combinée avec une correction bootstrap. Les auteurs présentent également une méthode simple pour améliorer, potentiellement, la performance d'un seul arbre avec le bagging. Une étude par simulation montre que des arbres seuls et des arbres “baggés” performent bien comparativement à un modèle paramétrique. Les auteurs présentent aussi une illustration de la nouvelle méthode avec des vraies données qui investiguent l'utilité d'utiliser des dimensions de la personnalité afin de prévoir le début de l'utilisation de la cigarette. La revue canadienne de statistique 37: 17-32; 2009 © 2009 Société statistique du Canada