Small area estimation of poverty indicators

Authors


Abstract

The authors propose to estimate nonlinear small area population parameters by using the empirical Bayes (best) method, based on a nested error model. They focus on poverty indicators as particular nonlinear parameters of interest, but the proposed methodology is applicable to general nonlinear parameters. They use a parametric bootstrap method to estimate the mean squared error of the empirical best estimators. They also study small sample properties of these estimators by model-based and design-based simulation studies. Results show large reductions in mean squared error relative to direct area-specific estimators and other estimators obtained by “simulated” censuses. The authors also apply the proposed method to estimate poverty incidences and poverty gaps in Spanish provinces by gender with mean squared errors estimated by the mentioned parametric bootstrap method. For the Spanish data, results show a significant reduction in coefficient of variation of the proposed empirical best estimators over direct estimators for practically all domains. The Canadian Journal of Statistics 38: 369–385; 2010 © 2010 Statistical Society of Canada

Abstract

Les auteurs proposent d'estimer les paramètres non linéaires d'une population de petits domaines en utilisant une méthode bayésienne empirique. L'emphase est mise sur les indicateurs de pauvreté comme paramètres non linéaires d'intérêt particuliers, mais ils proposent une méthodologie qui s'applique à des paramètres non linéaires plus généraux. Ils utilisent une méthode de rééchantillonnage paramétrique pour estimer l'erreur quadratique moyenne du meilleur estimateur empirique. À l'aide de simulations basées sur le modèle et sur le plan de sondage, ils étudient les propriétés de ces estimateurs pour les petits échantillons. Les résultats obtenus montrent une grande réduction de l'erreur quadratique moyenne par rapport aux estimateurs propres aux régions et les autres estimateurs obtenus par recensements « simulés». Les auteurs ont aussi appliqué la méthodologie proposée à l'estimation des incidences de pauvreté et des disparités, en fonction du sexe, du niveau de la pauvreté des provinces espagnoles. Les erreurs quadratiques moyennes sont estimées en utilisant la méthode de rééchantillonnage paramétrique citée auparavant. Pour les données espagnoles, les résultats montrent une réduction substantielle du coefficient de variation des meilleurs estimateurs empiriques proposés par rapport aux estimateurs spécifiques pour pratiquement tous les domaines. La revue canadienne de statistique 38: 369–385; 2010 © 2010 Société statistique du Canada

Ancillary