SEARCH

SEARCH BY CITATION

Keywords:

  • Multivariate copula;
  • regular vines;
  • simplified vines;
  • truncated canonical vines;
  • MSC 2010: Primary 62H15;
  • secondary 62H12

Abstract

Using only bivariate copulas as building blocks, regular vine copulas constitute a flexible class of high-dimensional dependency models. However, the flexibility comes along with an exponentially increasing complexity in larger dimensions. In order to counteract this problem, we propose using statistical model selection techniques to either truncate or simplify a regular vine copula. As a special case, we consider the simplification of a canonical vine copula using a multivariate copula as previously treated by Heinen & Valdesogo (2009) and Valdesogo (2009). We validate the proposed approaches by extensive simulation studies and use them to investigate a 19-dimensional financial data set of Norwegian and international market variables. The Canadian Journal of Statistics 40: 68–85; 2012 © 2012 Statistical Society of Canada

En utilisant uniquement des copules bidimensionnelles comme unités de base, les copules en arborescence régulière constituent une classe flexible pour modéliser la dépendance pour les grandes dimensions. Toutefois, en grandes dimensions, la flexibilité s'accompagne d'une croissance exponentielle de la complexité. Pour contrecarrer ce problème, nous proposons l'utilisation des techniques de sélection de modèles statistiques afin de tronquer ou encore de simplifier la copule en arborescence régulière. Comme cas particulier, nous considérons la simplification de la copule en arborescence canonique par l'utilisation d'une copule multidimensionnelle telle que présentée dans Heinen et Valdesogo (2009) et Valdesogo (2009). Nous validons les approches proposées par de vastes études de simulation et nous les utilisons pour analyser un jeu de données financières de dimension 19 sur des variables des marchés norvégien et internationaux. La revue canadienne de statistique 40: 68–85; 2012 © 2012 Société statistique du Canada