SEARCH

SEARCH BY CITATION

Keywords:

  • Asymptotics;
  • Bayesian analysis;
  • Bingham distribution;
  • hypercylinders;
  • hypergeometric functions;
  • MSC 2010: Primary 62F15;
  • secondary 62H11

Abstract

  1. Top of page
  2. Abstract
  3. 1. INTRODUCTION
  4. BIBLIOGRAPHY

We thank Koffi Eddy Ihou and Adrian M. Peter of Florida Institute of Technology, for bringing the following errors to our attention. The Canadian Journal of Statistics 40: 770–771; 2012 © 2012 Statistical Society of Canada

Nous remercions Koffi Eddy Ihou et Adrian M. Peter du Florida Institute of Technology d'avoir porté à notre attention les erreurs suivantes. La revue canadienne de statistique 40: 770–771; 2012 © 2012 Société statistique du Canada


1. INTRODUCTION

  1. Top of page
  2. Abstract
  3. 1. INTRODUCTION
  4. BIBLIOGRAPHY
  • 1.
    The third line on page 71 should read:
    • equation image
    the first operation was mistaken as +.
  • 2.
    Equation (2.4) should read:
    • equation image
    where equation image is the diagonal matrix with diagonal elements the eigenvalues of equation image and equation image is the confluent hypergeometric function of matrix argument (see Bingham, 1964).
  • 3.
    Hence (2.5) should read:
    • equation image
  • 4.
    Finally, the last equation on page 71 should read
    • equation image

BIBLIOGRAPHY

  1. Top of page
  2. Abstract
  3. 1. INTRODUCTION
  4. BIBLIOGRAPHY
  • Bagchi, P. & Kadane, J. B. (1991). Laplace approximations to posterior moments and marginals on circles, spheres, and cylinders. Canadian Journal of Statistics, 19, 6777.
  • Bingham, C. (1964). Distributions on the sphere and on the projective plane. Ph.D. dissertation, Yale University, New Haven, CT.