• Bayesian inference;
  • Box-Cox transformation;
  • cure fraction;
  • Gibbs sampling;
  • mixture cure model;
  • promotion time cure model


The authors propose a novel class of cure rate models for right-censored failure time data. The class is formulated through a transformation on the unknown population survival function. It includes the mixture cure model and the promotion time cure model as two special cases. The authors propose a general form of the covariate structure which automatically satisfies an inherent parameter constraint and includes the corresponding binomial and exponential covariate structures in the two main formulations of cure models. The proposed class provides a natural link between the mixture and the promotion time cure models, and it offers a wide variety of new modelling structures as well. Within the Bayesian paradigm, a Markov chain Monte Carlo computational scheme is implemented for sampling from the full conditional distributions of the parameters. Model selection is based on the conditional predictive ordinate criterion. The use of the new class of models is illustrated with a set of real data involving a melanoma clinical trial.