• 1
    Ge J, Baumgart D, Haude M, et al. Role of intravascular ultrasound imaging in identifying vulnerable plaques. Herz. 1999;24:3241.
  • 2
    Okubo M, Kawasaki M, Ishihara Y, et al. Development of integrated backscatter intravascular ultrasound for tissue characterization of coronary plaques. Ultrasound Med Biol. 2008;34:655663.
  • 3
    Jang IK, Tearney GJ, Bouma B. Visualization of tissue prolapse between coronary stents by optical coherence tomography: comparison with intravascular ultrasound. Circulation. 2001;104:2754.
  • 4
    Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:15511555.
  • 5
    MacNeill BD, Jang IK, Bouma BE, et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J Am Coll Cardiol. 2004;44:972979.
  • 6
    Hong MK, Minz GS, Lee CW, et al. Comparison of virtual histology to intravascular ultrasound of culprit coronary lesions in acute coronary syndrome and target coronary lesions in stable angina pectoris. Am J Cardiol. 2007;100:953959.
  • 7
    Waxman S, Dixon SR, L'Allier P, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging. 2009;2:858868.
  • 8
    Caplan JD, Waxman S, Nesto RW, et al. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol. 2006;18(8 suppl):C92C96.
  • 9
    Rinehart S, Vazquez G, Qian Z, et al. Coronary plaque imaging with multi-slice computed tomographic angiography and intravascular ultrasound: a close look inside and out. J Invasive Cardiol. 2009;21:367372.
  • 10
    Kawasaki T, Koga S, Koga N, et al. Characterization of hyperintense plaque with noncontrast T(1)-weighted cardiac magnetic resonance coronary plaque imaging: comparison with multislice computed tomography and intravascular ultrasound. JACC Cardiovasc Imaging. 2009;2:720728.
  • 11
    Uchida Y, Tomaru T, Nakamura F, et al. Percutaneous coronary angioscopy in patients with ischemic heart disease. Am Heart J. 1987;114:12161222.
  • 12
    Thieme T, Wernecke KD, Meyer R, et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol. 1996;28:16.
  • 13
    Ueda Y, Ohtani T, Shimizu M, et al. Assessment of plaque vulnerability by angioscopic classification of plaque color. Am Heart J. 2004;148:333335.
  • 14
    DeFeyter PJ, Ozaki Y, Baptista J, et al. Ischemia-related lesion characteristics in patients with stable or unstable angina: a study with intracoronary angioscopy and ultrasound. Circulation. 1995;92:14081413.
  • 15
    Uchida Y, Nakamura F, Tomaru T, et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J. 1995;130:195203.
  • 16
    Davies JR, Rudd JH, Weissberg PL, et al. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol. 2006;18(8 suppl):C57C68.
  • 17
    Strauss HW, Mari C, Patt BE, et al. Intravascular radiation detectors for the detection of vulnerable atheroma. J Am Coll Cardiol. 2006;47(8 suppl):C97C100.
  • 18
    Römer TJ, Brennan JF III, Fitzmaurice M, et al. Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy. Circulation. 1998;97:878885.
  • 19
    Matter CM, Schuler PK, Alessi P, et al. Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res. 2004;95:12251233.
  • 20
    Gilbert G, Soulez G, Beaudoin G. Improved in-stent lumen visualization using intravascular MRI and a balanced steady-state free-precession sequence. Acad Radiol. 2009;16:14661474.
  • 21
    Rocha R, Silveira L Jr, Villaverde AB, et al. Use of near-infrared Raman spectroscopy for identification of atherosclerotic plaques in the carotid artery. Photomed Laser Surg. 2007;25:482486.
  • 22
    Jaross W, Neumeister V, Lattke P, et al. Determination of cholesterol in atherosclerotic plaques using near-infrared diffuse reflection spectroscopy. Atherosclerosis. 1999;147:327337.
  • 23
    Weinmann P, Jouan M, Nguyen QD, et al. Quantitative analysis of cholesterol and cholesteryl esters in human atherosclerotic plaques using near-infrared Raman spectroscopy. Atherosclerosis. 1998;140:8188.
  • 24
    Yamada N. Molecular biology of atherosclerosis [in Japanese]. Nippon Rinsho. 1997;55(suppl):731737.
  • 25
    Miyamoto A, Prieto AR, Friedl SE, et al. Atheromatous plaque cap thickness can be determined by quantitative color analysis during angioscopy: implications for identifying the vulnerable plaque. Clin Cardiol. 2004;27:915.
  • 26
    Uchida Y. Coronary Angioscopy. New York, NY: Futura Publishing Co.; 2001:1181.
  • 27
    Ye B, Abela GS. Beta-carotene enhances plaque detection by fluorescence attenuation in an atherosclerotic rabbit model. Lasers Surg Med. 1993;13:393404.
  • 28
    Blankenhorn DH, Braunstein H. Carotenoids in man, III: the microscopic pattern of fluorescence in atheromas, and its relation to their growth. J Clin Invest. 1958;37:160165.