SEARCH

SEARCH BY CITATION

Keywords:

  • chemotaxis;
  • chemokinesis;
  • cell migration;
  • motility

Abstract

Polarization is a hallmark of migrating cells, and an asymmetric distribution of proteins is essential to the migration process. Caveolin-1 is highly polarized in migrating endothelial cells (EC). Several studies have shown caveolin-1 accumulation in the front of migrating EC while others report its accumulation in the EC rear. In this paper we address these conflicting results on polarized localization of caveolin-1. We find evidence for the hypothesis that different modes of locomotion lead to differences in protein polarization. In particular, we show that caveolin-1 is primarily localized in the rear of cells migrating on a planar substrate, but in the front of cells traversing a three-dimensional pore. We also show that a chemoattractant, present either as a gradient or ubiquitously in the medium, does not alter caveolin-1 localization in cells in either mode of locomotion. Thus we conclude that substrate topology, and not the presence of a chemoattractant, directs the polarization of caveolin-1 in motile ECs. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc.