SEARCH

SEARCH BY CITATION

References

  • Anne H, Madl J, Winfried R. 2013. JPK Instruments AG - Application Reports / Technical Reports - AFM_STORM, Available at: http://www.jpk.com/afm.230.en.html. Accessed on 25 August, 2013.
  • Axelrod D. 2001. Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764774.
  • Bálint Š, Vilanova IV, Álvarez ÁS, Lakadamyali M. 2013. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. PNAS 110:33753380.
  • Bates M, Huang B, Dempsey GT, Zhuang X. 2007. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:17491753.
  • Betzig E, Trautman JK. 1992. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189195.
  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:16421645.
  • Bianchini P, Harke B, Galiani S, Vicidomini G, Diaspro A. 2012. Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED) superresolution imaging. PNAS 109:63906393.
  • Bianco B, Diaspro A. 1989. Analysis of three-dimensional cell imaging obtained with optical microscopy techniques based on defocusing. Cell Biophys 15:189199.
  • Cella Zanacchi F, Lavagnino Z, Donnorso MP, Del Bue A, Furia L, Faretta M, Diaspro A. 2011. Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8:10471049.
  • Cella Zanacchi F, Lavagnino Z, Faretta M, Furia L, Diaspro A. 2013. Light-sheet confined super-resolution using two-photon photoactivation. PloS one 8:e67667.
  • Chacko JV, Canale C, Harke B, Diaspro A. 2013. Sub-diffraction nano manipulation using STED AFM. PLoS ONE 8:e66608.
  • Cox IJ, Sheppard CJR. 1986. Information capacity and resolution in an optical system. J Opt Soc Am A 3:11521158.
  • Diaspro A, editor. 2010. Nanoscopy and Multidimensional Optical Fluorescence Microscopy, 1st ed. London: Chapman and Hall/CRC.
  • Diaspro A. 2011. Optical Fluorescence Microscopy: from the Spectral to the Nano Dimension. Heidelberg: Springer.
  • Diaspro A, Sartore M, Nicolini C. 1990. 3D representation of biostructures imaged with an optical microscope: Part A: Digital optical sectioning. Image Vis Comput 8:130141.
  • Diaspro A, Beltrame F, Fato M, Ramoino P, 1996, Characterizing biostructures and cellular events in 2D/3D [using wide-field and confocal optical sectioning microscopy]. IEEE Eng Med Biol Mag 15:92100.
  • Diaspro A, Rolandi R. 1997. Atomic force microscopy. [Guest Editorial] Engineering in Medicine and Biology Magazine, IEEE, vol. 16, no. 2, pp. 26–27; March–April 1997. doi: 10.1109/MEMB.1997.582172.
  • Dufrêne YF, Pelling AE. 2013. Force nanoscopy of cell mechanics and cell adhesion. Nanoscale 5:40944104.
  • Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, Von Middendorff C, Schönle A, Hell SW. 2008. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:11591162.
  • Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW. 2008. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat methods 5:943945.
  • di Francia GT. 1952. Super-gain antennas and optical resolving power. Il Nuovo Cimento 9:426438.
  • di Francia GT . 1955. Resolving power and information. J Opt Soc Am 45:497499.
  • Galiani S, Harke B, Vicidomini G, Lignani G, Benfenati F, Diaspro A, Bianchini P. 2012. Strategies to maximize the performance of a STED microscope. Opt Express 20:73627374.
  • Grigoriev I, Akhmanova A. 2010. Microtubule dynamics at the cell cortex probed by TIRF microscopy. In: Cassimeris L, Tran P, editors. Methods in Cell Biology, Chapter 6. New York: Academic Press. pp 91109.
  • Guo Q, Xia Y, Sandig M, Yang J. 2012. Characterization of cell elasticity correlated with cell morphology by atomic force microscope. J Biomech 45:304309.
  • Gustafsson MGL. 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:8287.
  • Hamon L, Curmi PA, Pastré D. 2010. High-resolution imaging of microtubules and cytoskeleton structures by atomic force microscopy. In: Wilson L, Correia JJ, editors. Methods in Cell Biology, Chapter 9. New York: Academic Press. pp 157174.
  • Harke B, Keller J, Ullal CK, Westphal V, Sch\önle A, Hell SW. 2008. Resolution scaling in STED microscopy. Opt Express 16:41544162.
  • Harke B, Chacko J, Canale C, Diaspro A. 2012. A novel nanoscopic tool by combining AFM with STED microscopy. Opt Nanosc 1:3.
  • Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M. 2008. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:61726176.
  • Hein B, Willig KI, Hell SW. 2008. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci USA 105:1427114276.
  • Hell SW. 2007. Far-Field Optical Nanoscopy. Science 316:11531158.
  • Hell SW, Wichmann J. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780782.
  • Hell SW, Dyba M, Jakobs S. 2004. Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14:599609.
  • Hell SW, Willig KI, Dyba M, Jakobs S, Kastrup L, Westphal V. 2006. Nanoscale resolution with focused light: Stimulated emission depletion and other reversible saturable optical fluorescence transitions microscopy concepts. Handbook Biol Confocal Microsc 571579.
  • Hess ST, Girirajan TPK, Mason MD. 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:42584272.
  • Hofmann M, Eggeling C, Jakobs S, Hell SW. 2005. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102:17565.
  • Hofmann UG, Rotsch C, Parak WJ, Radmacher M. 1997. Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. J Struct Biol 119:8491.
  • Huang B, Jones SA, Brandenburg B, Zhuang X. 2008a. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5:10471052.
  • Huang B, Wang W, Bates M, Zhuang X. 2008b. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810813.
  • Jones SA, Shim S-H, He J, Zhuang X. 2011. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499508.
  • Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J. 2008. Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5:527529.
  • Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. 2000. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci 97:82068210.
  • Kubitscheck U. 2013. Fluorescence Microscopy: From Principles to Biological Applications. Weinheim: Wiley.
  • Lavagnino Z, Cella Zanacchi F, Ronzitti E, Diaspro A. 2013. Two-photon excitation selective plane illumination microscopy (2PE-SPIM) of highly scattering samples: characterization and application. Opt Express 21:59986008.
  • Lee HD, Sahl SJ, Lew MD, Moerner WE. 2012. The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Appl Phys Lett 100:153701153701–3.
  • Lin H, Centeno SP, Su L, Kenens B, Rocha S, Sliwa M, Hofkens J, Uji-i H. 2012. Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy. ChemPhysChem 13:973981.
  • Lippincott-Schwartz J, Snapp E, Kenworthy A. 2001. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444456.
  • Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov V, Hell S, Eggeling C. 2011. STED nanoscopy reveals molecular details of cholesterol-and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101:16511660.
  • Ronzitti E, Harke B, Diaspro A. 2013. Frequency dependent detection in a STED microscope using modulated excitation light. Opt Express 21:210219.
  • Rust MJ, Bates M, Zhuang X. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat methods 3:793796.
  • Schermelleh L, Heintzmann R, Leonhardt H. 2010. A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165175.
  • Sheppard CJR. 1988. Super-resolution in confocal imaging. Optik (Stuttg.) 80:5354.
  • Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV. 2010. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132:64816491.
  • Takai E, Costa KD, Shaheen A, Hung CT, Guo XE. 2005. Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann Biomed Eng 33:963971.
  • Tamarit B, Bugault F, Pillet A-H, Lavergne V, Bochet P, Garin N, Schwarz U, Thèze J, Rose T. 2013. Membrane microdomains and cytoskeleton organization shape and regulate the IL-7 receptor Signalosome in human CD4 T-cells. J Biol Chem 288:86918701.
  • Trache A, Lim S-M. 2010. Live cell response to mechanical stimulation studied by integrated optical and atomic force microscopy. J Vis Exp 44:e2072. doi: 10.3791/2072.
  • Turner RD, Hurd AF, Cadby A, Hobbs JK, Foster SJ. 2013. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nat Commun 4:1496. doi:10.1038/ncomms2503.
  • Urban NT, Willig KI, Hell SW, Nägerl UV. 2011. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101:12771284.
  • Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW. 2011. Sharper low-power STED nanoscopy by time gating. Nat Methods 8:571573.
  • Westphal V, Hell SW. 2005. Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94:143903.
  • Xu K, Zhong G, Zhuang X. 2013. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452456.
  • Yang TT, Hampilos PJ, Nathwani B, Miller CH, Sutaria ND, Liao J-C. 2013. Superresolution STED microscopy reveals differential localization in primary cilia. Cytoskeleton 70:5465.
  • Zobel T, Bogdan S. 2013. A high resolution view of the fly actin cytoskeleton lacking a functional WAVE complex. J Microsc 251:224231.