CENP-F is a ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization

Authors


Abstract

We have identified a novel .ca 400 kDa cell-cycle dependent kinetochore associated protein in human cells, designated CENP-F, using human autoimmune serum. Immunofluorescence staining using the native serum, affinity purified antibodies, or antibodies raised against a cloned portion of CENP-F first reveals CENP-F homogeneously distributed throughout the nucleus of HeLa cells in the G2 stage of the cell cycle. Progression into prophase is accompanied by the localization of CENP-F to all the kinetochore regions of the karyotype. Kinetochore association is maintained throughout metaphase, but at the onset of anaphase CENP-F is no longer detected in association with the kinetochore but is found at the spindle mid-zone. By telophase, it is concentrated into a narrow band on either side of the midbody. Studies of the interaction of CENP-F with the kinetochore indicate that this protein associates with the kinetochore independent of tubulin and dissociation is dependent on events connected with the onset of anaphase. Nuclease digestion studies and immunoelectron-microscopy indicate that CENP-F is localized to the kinetochore plates and specifically to the outer surface of the outer kinetochore plate. The distribution of CENP-F closely parallels that of another high molecular weight kinetochore associated protein, CENP-E. Comparative studies indicate that there are antibodies in the CENP-F reactive autoimmune serum that recognize determinants present in the central helical rod domain of CENP-E. Immune depletion experiments confirm that CENP-F exhibits the distribution pattern in cells that was seen with the native autoimmune serum. © 1993 Wiley-Liss, Inc.

Ancillary