• antibiotics;
  • demethylvancomycin;
  • drug resistance;
  • structure–activity relationships;
  • synthesis design


Five novel N-substituted demethylvancomycin derivatives were rationally designed and synthesized by using a structure-based approach. The in vitro antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA), gentamicin-resistant Enterococcus faecalis (GRE), methicillin-resistant Streptococcus pneumoniae (MRS), and vancomycin-resistant Enterococcus faecalis (VRE) were evaluated. One of the compounds, N-(6-phenylheptyl)demethylvancomycin (12 a), was found to exhibit more potent antibacterial activity than vancomycin and demethylvancomycin. Compound 12 a was also found to be ∼18-fold more efficacious than vancomycin against MRSA; however, the two compounds were found to have similar efficacy against MRS. Furthermore, compound 12 a exhibited a favorable pharmacokinetic profile with a half-life of 5.11±0.52 h, which is longer than that of vancomycin (4.3±1.9 h). These results suggest that 12 a is a promising antibacterial drug candidate for further preclinical evaluation.