A Conformational Mimetic Approach for the Synthesis of Carbocyclic Nucleosides as Anti-HCV Leads



Computer-aided approaches coupled with medicinal chemistry were used to explore novel carbocyclic nucleosides as potential anti-hepatitis C virus (HCV) agents. Conformational analyses were carried out on 6-amino-1H-pyrazolo[3,4-d]pyrimidine (6-APP)-based carbocyclic nucleoside analogues, which were considered as nucleoside mimetics to act as HCV RNA-dependent RNA polymerase (RdRp) inhibitors. Structural insight gained from the modeling studies revealed the molecular basis behind these nucleoside mimetics. The rationally chosen 6-APP analogues were prepared and evaluated for anti-HCV activity. RdRp SiteMap analysis revealed the presence of a hydrophobic cavity near C7 of the nucleosides; introduction of bulkier substituents at this position enhanced their activity. Herein we report the identification of an iodinated compound with an EC50 value of 6.6 μM as a preliminary anti-HCV lead.