• 1
    Greenlee RT, Murray T, Boldon S, Wingo PA. Cancer statistics. CA Cancer J Clin 2000; 50: 733.
  • 2
    Friess H, Kleeff J, Kulli C, Wagner M, Sawhney H, Büchler MW. The impact of different types of surgery in pancreatic cancer. Eur J Surg Oncol 1999; 25: 12431.
  • 3
    Büchler M, Friess H, Schultheiss KH, Gebhardt CH, Muhrer KH, Winkelmann M, et al. A randomized controlled trial of adjuvant immunotherapy (murine monoclonal antibody 494/32) in resectable pancreatic cancer. Cancer 1991; 68: 150712.
  • 4
    Friess H, Büchler M, Krüger M, Beger HG. Treatment of duct carcinoma of the pancreas with the LH-RH-analogue buserelin. Pancreas 1992; 7: 51621.
  • 5
    Bresalier RS, Yan PS, Byrd JC, Lotan R, Raz A. Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer 1997; 80: 77687.
  • 6
    Hsu DK, Dowling CA, Jeng KC, Chen JT, Yang RY, Liu FT. Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma. Int J Cancer 1999; 81: 51926.
  • 7
    Lotan R, Ito H, Yasui W, Yokozaki H, Lotan D, Tahara E. Expression of a 31-kDa lactoside-binding lectin in normal human gastric mucosa and in primary and metastatic gastric carcinomas. Int J Cancer 1994; 56: 47480.
  • 8
    Lotz MM, Andrews CW Jr., Korzelius CA, Lee EC, Steele GD Jr., Clarke A, et al. Decreased expression of Mac-2 (carbohydrate binding protein 35) and loss of its nuclear localization are associated with the neoplastic progression of colon carcinoma. Proc Natl Acad Sci USA 1993;90: 346670.
  • 9
    Sanjuan X, Fernandez PL, Castells A, Castronovo V, van den Brule F, Liu FT, et al. Differential expression of galectin-3 and galectin-1 in colorectal cancer progression. Gastroenterology 1997; 113: 190615.
  • 10
    Schoeppner HL, Raz A, Ho SB, Bresalier RS. Expression of an endogenous galactose-binding lectin correlates with neoplastic progression in the colon. Cancer 1995; 75: 281826.
  • 11
    Hughes EN, August JT. Murine cell surface glycoproteins. Characterization of a major component of 80,000 daltons as a polymorphic differentiation antigen of mesenchymal cells. J Biol Chem 1981;256: 70237.
  • 12
    Chen JW, Murphy TL, Willingtham MC, Pastan I, August JT. Identification of two lysosomal membrane glycoproteins. J Cell Biol 1985; 101: 8595.
  • 13
    Fukuda M, Viitala J, Matteson J, Carlsson SR. Cloning of cDNAs encoding human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Comparison of their deduced amino acid sequences. J Biol Chem 1988;263: 189208.
  • 14
    Furuta K, Xiao-Ling Y, Juei-Suei C, Stanley RH, August JT. Differential expression of the lysosome-associated membrane proteins in normal human tissues. Arch Biochem Biophys 1999; 365: 7582.
  • 15
    Arterburn LM, Earles BJ, August JT. The disulfide structure of mouse lysosome-associated membrane protein 1. J Biol Chem 1990; 265: 741923.
  • 16
    Guarnieri FG, Arterburn LM, Penno MB, Cha Y, August JT. The motif Tyr-X-X-hydrophobic residue mediates lysosomal membrane targeting of lysosome-associated membrane protein 1. J Biol Chem 1993; 268: 19416.
  • 17
    Chen JW, Chen GL, D'Souza MP, Murphy TL, August JT. Lysosomal membrane glycoproteins: properties of LAMP-1 and LAMP-2. Biochem Soc Symp 1986; 51: 97112.
  • 18
    Hughes EN, August JT. Coprecipitation of heat shock proteins with a cell surface glycoprotein. Proc Natl Acad Sci USA 1982; 79: 23059.
  • 19
    Fukuda M. Lysosomal membrane glycoproteins: structure, biosynthesis, and intracellular trafficking. J Biol Chem 1991; 266: 2132730.
  • 20
    Lee N, Wang WC, Fukuda M. Granulocytic differentiation of HL-60 cells is associated with increase of poly-N-acetyllactosamine in Asn-linked oligosaccharides attached to human lysosomal membrane glycoproteins. J Biol Chem 1990; 265: 2047687.
  • 21
    Carlsson SR, Fukuda M. Structure of human lysosomal membrane glycoprotein 1: assignment of disulfide bonds and visualization of its domain arrangement. J Biol Chem 1989; 264: 2052631.
  • 22
    Youakim A, Romero PA, Yee K, Carlsson SR, Fukuda M, Herscovics A. Decrease in polylactosaminoglycans associated with lysosomal membrane glycoproteins during differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res 1989; 49: 688995.
  • 23
    Yamashita K, Ohkura T, Tachibana Y, Takasaki S, Kobata A. Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 1984; 259: 1083440.
  • 24
    Pierce M, Arango J. Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetraantennary glycopeptides containing [GlcNAc-beta (1,6)Man-alpha (1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 1986; 261: 107727.
  • 25
    Yousefi S, Higgins E, Doaling Z, Pollex-Krüger A, Hindsgaul O, Dennis JW. Increased UDP-GlcNAc:Gal beta 1-3GaLNAc-R (GlcNAc to GaLNAc) beta-1, 6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis. J Biol Chem 1991;266: 177282.
  • 26
    Laferte S, Dennis JW. Oncodevelopmental expression of GlcNAc beta 1-6Man alpha 1-6Man beta 1 branched asparagine-linked oligosaccharides in murine tissues and human breast carcinomas. Cancer Res 1989; 49: 607784.
  • 27
    Sawada R, Jardine KA, Fukuda M. The genes of major lysosomal membrane glycoproteins, lamp-1 and lamp-2. 5′-flanking sequence of lamp-2 gene and comparison of exon organization in two genes. J Biol Chem 1993;268: 901422.
  • 28
    Acevedo-Schermerhorn C, Gray-Bablin J, Gama R, McCormick PJ. T-complex-associated embryonic surface antigen homologous to mLAMP-1: biochemical and molecular analyses. Exp Cell Res 1997; 236: 5108.
  • 29
    Saitoh O, Wang WC, Lotan R, Fukuda M. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem 1992; 267: 570011.
  • 30
    Iacobelli S, Arno E, D'Orazio A, Coletti G. Detection of antigens recognized by a novel monoclonal antibody in tissue and serum from patients with breast cancer. CancerRes 1986; 46: 300510.
  • 31
    Ullrich A, Sures I, D'Egidio M, Jallal B, Powell TJ, Herbst R, et al. The secreted tumor-associated antigen 90K is a potent immune stimulator. J Biol Chem 1994; 269: 184017.
  • 32
    Koths K, Taylor E, Halenbeck R, Casipit C, Wans A. Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem 1993; 268: 142459.
  • 33
    Inohara H, Akahani S, Koths K, Raz A. Interactions between Galectin-3 and Mac-2 binding protein mediate cell-cell adhesion. Cancer Res 1996; 56: 45304.
  • 34
    Yu B, Wright SD. LPS-dependent interaction of Mac-2 binding protein with immobilized CD 14. J Inflamm 1995; 45: 11525.
  • 35
    Jallal B, Powell J, Zachwieja J, Brakebusch C, Germain L, Jacobs J, et al. Suppression of tumor growth in vivo by local and systemic 90K level increase. Cancer Res 1995; 55: 32237.
  • 36
    Sobin LH, Wittekind C. Pancreas. In: SobinLH, WittekindC, editors. TNM classification of malignant tumors. 5th ed. New York: Springer-Verlag, 1997: 8790.
  • 37
    Zhu ZW, Friess H, diMola FF, Zimmermann A, Graber HU, Korc M, et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 1999; 17: 241928.
  • 38
    Friess H, Yamanaka Y, Büchler MW, Ebert M, Beger HG, Gold LI, et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993; 105: 184656.
  • 39
    Korc M, Chandrasekar B, Yamanaka Y, Friess H, Büchler M, Beger HG. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increase in levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 1992; 90: 135360.
  • 40
    Guo XZ, Friess H, Graber HU, Kashiwagi M, Zimmermann A, Korc M, et al. KAI1 expression is up-regulated in early pancreatic cancer and decreased in the presence of metastasis. Cancer Res 1996; 56: 487680.
  • 41
    Yamanaka Y, Friess H, Büchler MW, Beger HG, Gold LI, Korc M. Synthesis and expression of transforming growth factor beta 1, beta 2 and beta 3 in endocrine and exocrine pancreas. Diabetes 1993; 42: 74656.
  • 42
    Mane SM, Marzella L, Bainton DF, Holt VK, Cha Y, Hildreth JE, et al. Purification and characterization of human lysosomal membrane glycoproteins. Arch Biochem Biophys 1989; 268: 36078.
  • 43
    Timpl R. Antibodies to collagens and procollagens. Methods Enzymol 1982; 82: 47298.
  • 44
    Kleeff J, Ishiwata T, Kumbasar A, Friess H, Büchler MW, Lander AD, et al. The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest 1998; 102: 166273.
  • 45
    Raitano AB, Korc M. Tumor necrosis factor up-regulates gamma-interferon binding in a human carcinoma cell line. J Biol Chem 1990; 265: 1046672.
  • 46
    Zhu ZW, Friess H, Wang L, Bogardus T, Korc M, Kleeff J, et al. Nerve growth factor exerts differential effects on the growth of human pancreatic cancer cells. Clin Cancer Res 2001; 7: 10512.
  • 47
    Berberat PO, Friess H, Wang L, Zhu Z, Bley T, Frigeri L, et al. Comparative analysis of galectins in primary tumors and tumor metastasis in human pancreatic cancer. J Histochem Cytochem 2001; 49: 111.
  • 48
    Hall PA, Hughes CM, Staddon SL, Richman PI, Gullick WJ, Lemoine NR. The c-erbB-2-proto-oncogene in human pancreatic cancer. J Pathol 1990; 161: 195200.
  • 49
    Friess H, Berberat P, Schilling M, Kunz J, Korc M, Büchler MW. Pancreatic cancer: the potential clinical relevance of alterations in growth factors and their receptors. J Mol Med 1996; 74: 3542.
  • 50
    Yamanaka Y, Friess H, Büchler MW, Kobrin MS, Beger HG, Uchida E, et al. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced aggressiveness. Anticancer Res 1993; 13: 56570.
  • 51
    Yamanaka Y, Friess H, Büchler MW, Beger HG, Uchida E, Masahiko O, et al. Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res 1993; 53: 528996.
  • 52
    Yokoyama M, Ebert M, Funatomi H, Friess H, Büchler MW, Johnson GR, et al. Amphiregulin is a potent mitogen in human pancreatic cancer cells: correlation with patients' survival. Int J Oncol 1995; 6: 62531.
  • 53
    Wooley DE. Proteolytic enzymes of invasive cells. In: MareelMM, CalmanKC, editors. Invasion, experimental and clinical implications. New York: Oxford University Press, 1984: 22851.
  • 54
    Hart IR, Goode NT, Wilson RE. Molecular aspects of the metastatic cascade. Biochim Biophys Acta 1989; 989: 6484.
  • 55
    Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980; 284: 678.
  • 56
    Liotta LA, Stetler-Stevenson WG. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 1991; 51(Suppl): 50549.
  • 57
    Inohara H, Raz A. Identification of human melanoma cellular and secreted ligands for galectin-3. Biochem Biophys Res Commun 1994; 201: 136675.
  • 58
    Sarafian V, Jadot M, Foidart JM, Letesson JJ, van den Brule F, Castronovo V, et al. Expression of Lamp-1 and Lamp-2 and their interactions with galectin-3 in human tumor cells. Int J Cancer 1998; 75: 10511.
  • 59
    Mollenhauer J, Roether I, Kern HF. Distribution of extracellular matrix proteins in pancreatic ductal adenocarcinomas and its influence in tumor cell proliferation in vitro. Pancreas 1987; 2: 1424.
  • 60
    Lohr M, Trautmann B, Gottler M, Peters S, Zauner I, Maillet B, et al. Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. Br J Cancer 1994; 69: 14451.
  • 61
    Sasaki T, Brakebusch C, Engel J, Timpl R. Mac-2-BP is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds β1 integrins, collagens and fibronectin. EMBO J 1998; 17: 160613.
  • 62
    Lee CS, Montebello J, Georgiou T, Rode J. Distribution of type IV collagen in pancreatic adenocarcinoma and chronic pancreatitis. Int J Exp Pathol 1994; 75: 7983.
  • 63
    Wang Z-H, Manabe T, Ohshio G, Imamura T, Yoshimura T, Suwa H, et al. Immunohistochemical study of heparan sulfate proteoglycan in adenocarcinomas of the pancreas. Pancreas 1994; 9: 75863.
  • 64
    Iacobelli S, Sismondi P, Giai M, D'Egidio M, Tinari N, Amatetti C, et al. Prognostic value of novel circulating serum 90K antigen in breast cancer. Br J Cancer 1994; 69: 1726.
  • 65
    Fusco O, Querzoli P, Nenci I, Natoli C, Brakebush C, Ullrich A, et al. 90K (Mac-2 BP) gene expression in breast cancer and evidence for the production of 90K by peripheral-blood mononuclear cells. Int J Cancer 1998; 79: 236.
  • 66
    Natoli C, Iacobelli S, Kohn LD. The immune stimulatory protein 90K increases major-histocompatibility-complex-class-I expression in a human breast-cancer cell line. Biochem Biophys Res Comm 1996; 225: 61720.