SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Jemal A, Thomas A, Murray T, Thurn M. Cancer statistics. CA Cancer J Clin. 2002; 52: 2347.
  • 2
    Clarke R, Dickson RB, Lippman ME. Hormonal aspects of breast cancer. Crit Rev Oncol Hematol. 1992; 12: 1.
  • 3
    Elledge RM, Fuqua SA. Estrogen and progesterone receptors. In: HarrisJR, editor. Diseases of the breast, volume 2. Philadelphia: Lippincott Williams & Wilkins, 2000: 471488.
  • 4
    Clark G. Prognostic and predictive factors. In: HarrisJR, editor. Diseases of the breast, volume 2. Philadelphia: Lippincott Williams & Wilkins, 2000: 489514.
  • 5
    Trichopoulos D, MacMahon B, Cole P. Menopause and breast cancer risk. J Natl Cancer Inst. 1972; 48: 605613.
  • 6
    Hulka BS, Moorman P. Breast cancer: hormones and other risk factors. Maturitas. 2001; 38: 103-–116.
  • 7
    Maehle B, Tretli S. Pre-morbid body-mass-index in breast cancer: reversed effect on survival in hormonal receptor negative patients. Breast Cancer Res Treat. 1996; 41: 123130.
  • 8
    Nicholson R, McClelland R, Robertson J, Gee J. Involvement of steroid hormone and growth factor cross-talk in endocrine response in breast cancer. Endocr Relat Cancer. 1999; 6: 373387.
  • 9
    Maruyama S, Fujimoto N, Asano K, Ito A. Suppression by estrogen receptor β of AP-1 mediated transactivation through estrogen receptor α. J Steroid Biochem Mol Biol. 2001; 78: 177184.
  • 10
    Paech K, Webb P, Kuiper GGJM, et al. Differential ligand activation of estrogen receptors ER α and ER β at AP1 sites. Science. 1997; 277: 15081510.
  • 11
    Barhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J-A, Nilsson B. Differential response of estrogen receptor α and estrogen receptor β to partial estrogen agonists/antagonists. Mol Pharmacol. 1998; 54: 105112.
  • 12
    Osborne CK, Boldt D, Clark G. Effects of tamoxifen on human breast cancer cell cycle kinetics. Cancer Res. 1983; 43: 3583.
  • 13
    Sweeney K, Musgrove E, Watts C. Cyclins and breast cancer. In: DicksonRB, LippmanME, editors. Mammary tumor cell cycle, differentiation and metastasis. Boston: Kluwer Academic Publishers, 1996: 141.
  • 14
    Pang H, Faber L. Estrogen and rapamycin effects on cell cycle progression in T47D breast cancer cells. Breast Cancer Res Treat. 2001; 70: 2126.
  • 15
    Foster J, Wimalasena J. Estrogen regulates activity of cyclin-dependent kinases and retinoblastoma protein phosphorylation in breast cancer cells. Mol Endocrinol. 1996; 10: 488498.
  • 16
    Prall O, Sarcevic B, Musgrove E, Watts C, Sutherland R. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased Cyclin D1 expression and decreased Cyclin-dependent kinase Inhibitor association with Cyclin E-Cdk2. J Biol Chem. 1997; 272: 1088210894.
  • 17
    Zafonte B, Hulit J, Amanatullah D, et al. Cell-cycle dysregulation in breast cancer: breast cancer therapies targeting the cell cycle. Front Biosci. 2000; 5: D938D961.
  • 18
    Chlebowski RT, Collyar DE, Somerfield MR, Pfister DG. American Society of Clinical Oncology Technology assessment on breast cancer risk reduction strategies: tamoxifen and raloxifene. J Clin Oncol. 1999; 17: 19391955.
  • 19
    Cheung W, Briggs S, Allis C. Acetylation and chromosomal functions. Curr Opin Cell Biol. 2000; 12: 326333.
  • 20
    Bird A. Methylation talk between histones and DNA. Science. 2001; 294: 21132115.
  • 21
    Ferguson AT, Lapidus R, Baylin S, Davidson NE. Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res. 1995; 55: 22792283.
  • 22
    Ottaviano Y, Issa J, Parl F, Smith H, Baylin S, Davidson N. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994; 54: 25522555.
  • 23
    Bird A, Wolffe A. Methylation-induced repression-belts, braces, and chromatin. Cell. 1999; 99: 451454.
  • 24
    Ferguson AT, Vertino P, Spitzner J, Baylin S, Muller M, Davidson NE. Role of estrogen receptor gene demethylation and DNA methyltransferase-DNA adduct formation in 5-Aza-2'-deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem. 1997; 272: 3226032266.
  • 25
    Lapidus R, Ferguson AT, Ottaviano Y, et al. Methylation of estrogen and progesterone receptor 5' CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res. 1996; 2: 805810.
  • 26
    Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE. Synergistic activation of functional estrogen receptor (ER)- α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells. Cancer Res. 2001; 61: 70257029.
  • 27
    Kuiper GGJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA. 1996; 93: 59255930.
  • 28
    Mosselman S, Polman J, Dijkema R. ER β: Identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996; 392: 4953.
  • 29
    Kuiper GGJM, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology. 1997; 138: 863870.
  • 30
    Fuqua SA, Schiff R, Parra I, et al. Expression of wild-type estrogen receptor β and variant forms in human breast cancer. Cancer Res. 1999; 59: 54255428.
  • 31
    Speirs V, Parkes A, Kerin M, et al. Coexpression of estrogen receptor α and β: poor prognostic factors in human breast cancer? Cancer Res. 1999; 59: 525528.
  • 32
    Jensen E, Cheng G, Palmieri C, et al. Estrogen receptors and proliferation markers in primary and recurrent breast cancer. Proc Natl Acad Sci U S A. 2001; 98: 1519715202.
  • 33
    Dotzlaw H, Leygue E, Watson PH, Murphy LC. Estrogen receptor β messenger RNA expression in human breast tumor biopsies: relationship to steroid receptor status and regulation by progestins. Cancer Res. 1999; 59: 529532.
  • 34
    Iwao K, Miyoshi Y, Egawa C, Ikeda K, Noguchi S. Quantitative analysis of estrogen receptor β mRNA and its variants in human breast cancers. Int J Cancer. 2000; 88: 733736.
  • 35
    Rutherford T, Brown W, Sapi E, Aschkenazi S, Munoz A, Mor G. Absence of estrogen receptor β expression in metastatic ovarian cancer. Obstet Gynecol. 2000; 96: 417420.
  • 36
    Leav I, Lau K-M, Adams J, et al. Comparative studies of the estrogen receptors β and α and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. Am J Pathol. 2001; 159: 7992.
  • 37
    Roger P, Sahla M, Makela S, Gustafsson J-A, Baldet P, Rochefort H. Decreased expression of estrogen receptor β protein in proliferative preinvasive mammary tumors. Cancer Res. 2001; 61: 25372541.
  • 38
    Jarvinen TAH, Pelto-Huikko M, Holli K, Isola J. Estrogen Receptor β is coexpressed with ER a and PR and associated with nodal status, grade, and proliferation rate in breast cancer. Am J Pathol. 2000; 156: 2935.
  • 39
    Kastner P, Krust A, Turcotte B, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990; 9: 16031614.
  • 40
    Ariga N, Suzuki T, Moriya T, et al. Progesterone receptor A and B isoforms in the human breast and its disorders. Jpn J Cancer Res. 2001; 92: 302308.
  • 41
    Graham JD, Roman SD, McGowan E, Sutherland RL, Clarke CL. Preferential stimulation of human progesterone receptor B expression by estrogen in T-47D human breast cancer cells. J Biol Chem. 1995; 270: 3069330700.
  • 42
    Bamberger A-M, Milde-Langosch K, Schulte H, Loning T. Progesterone receptor isoforms, PR-B and PR-A, in breast cancer: correlations with clinicopathologic tumor parameters and expression of AP-1 factors. Horm Res. 2000; 54: 3237.
  • 43
    Ferguson AT, Lapidus R, Davidson NE. Demethylation of the progesterone receptor CpG island is not required for progesterone receptor gene expression. Oncogene. 1998; 17: 577583.
  • 44
    Widschwendter M, Berger J, Muller H, Zeimet A, Marth C. Epigenetic downregulation of the retinoid acid receptor β2 gene in breast cancer. J Mammary Gland Biol Neoplasia. 2001; 6: 193201.
  • 45
    Seewaldt V, Dietze E, Johnson B, Collins S, Parker M. Retinoic acid mediated G1-S phase arrest of normal human mammary epithelial cells is independent of the level of p53 protein expression. Cell Growth Differ. 1999; 10: 4959.
  • 46
    Zhang X, Liu Y, Lee M, Pfahl M. A specific defect in the retinoic acid receptor associated with human lung cancer cell lines. Cancer Res. 1994; 54: 56635669.
  • 47
    Houle B, Rochette-Egly C, Bradley WE. Tumor suppressor effect of the retinoic acid receptor β in human epidermoid lung cancer cells. Proc Natl Acad Sci U S A. 1993; 90: 985989.
  • 48
    Xu X, Ro J, Lee L, Shin D, Hong W, Lotan R. Differential expression of nuclear retinoid receptors in normal, premalignant, and malignant head and neck cancers. Cancer Res. 1994; 54: 35803587.
  • 49
    Qiu H, Zhang W, El-Naggar A, et al. Loss of retinoic acid receptor β expression is an early event during esophageal carcinogenesis. Am J Pathol. 1999; 155: 15191523.
  • 50
    Sabichi A, Hendricks D, Bober M, Birrer M. Retinoic acid receptor β expression and growth inhibition of gynecologic cancer cells by the synthetic retinoid N-(4-Hydroxyphenyl) retinamide. J Natl Cancer Inst. 1998; 90: 597605.
  • 51
    Lotan Y, Xu X, Shalev M, et al. Differential expression of nuclear retinoid receptors in normal and malignant prostates. J Clin Oncol. 2000; 18: 116121.
  • 52
    Swisshelm K, Ryan K, Lee X, Tsou H, Peacocke M, Sager R. Downregulation of retinoic acid receptor b in mammary carcinoma cell lines and its upregulation in senescing normal mammary epithelial cells. Cell Growth Differ. 1994; 5: 133141.
  • 53
    Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science. 1996; 274: 20572059.
  • 54
    Yang Q, Mori I, Shan L, et al. Biallelic inactivation of retinoic acid receptor β2 gene by epigenetic change in breast cancer. Am J Pathol. 2001; 158: 299303.
  • 55
    Liu Y, Lee M, Wang H, et al. Retinoic acid receptor beta mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol. 1996; 16: 11381149.
  • 56
    Arapshian A, Kuppumbatti Y, Mira-y-lopez R. Methylation of conserved CpG sites neighboring the beta retinoic acid response element may mediate retinoic acid receptor beta gene silencing in MCF-7 breast cancer cells. Oncogene. 2000; 19: 40664070.
  • 57
    Bovenzi V, Momparler R. Antineoplastic action of 5-aza-2′-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor β and estrogen receptor α genes in breast carcinoma cells. Cancer Chemother Pharmacol. 2001; 48: 7176.
  • 58
    Sirchia S, Ferguson AT, Sironi E, et al. Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor b2 promoter in breast cancer cells. Oncogene. 2000; 19: 15561563.
  • 59
    Sirchia SM, Ren M, Pili R, et al. Endogenous reactivation of the RARβ2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Res. 2002; 62: 24552461.
  • 60
    Olayioye M, Neve R, Lane H, Hynes N. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 2000; 19: 31583167.
  • 61
    Kokai Y, Myers J, Wada T, et al. Synergistic interaction of p186c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell. 1989; 58: 287292.
  • 62
    Guy C, Webster M, Schaller M, Parsons T, Cardiff R, Muller W. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A. 1992; 89: 1057810582.
  • 63
    Muller H, Sinn E, Pattengale P, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell. 1988; 54: 105115.
  • 64
    Matsui Y, Halter S, Holt J, Hogan B, Coffey R. Development of mammary hyperplasia and neoplasia in MMTV-TGF α transgenic mice. Cell. 1990; 61: 11471155.
  • 65
    Slamon D, Clark G, Wong S, Levin W, Ullrich A, McGuire W. Human breast cancer: correlation of relapse and survival with amplification of the HER2/neu oncogene. Science. 1987; 235: 177182.
  • 66
    Slamon D, Godolphin W, Jones L, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989; 244: 707712.
  • 67
    Thor AD, Liu S, Edgerton S, et al. Activation (Tyrosine Phosphorylation) of ErbB-2 (HER-2/neu): a study of incidence and correlation with outcome in breast cancer. J Clin Oncol. 2000; 18: 32303239.
  • 68
    Emi Y, Kitamura K, Shikada Y, Kakeji Y, Takahashi I, Tsutsui S. Metastatic breast cancer with HER2/neu-positive cells tend to have a morbid prognosis. Surgery. 2002; 131: S217S221.
  • 69
    Siegel PM, Ryan ED, Cardiff RD, Muller WJ. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J. 1999; 18: 21492164.
  • 70
    Chan K, Knox W, Gee J, et al. Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res. 2002; 62: 122128.
  • 71
    Moasser M, Basso A, Averbauch S, Rosen N. The tyrosine inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res. 2001; 61: 71847188.
  • 72
    Moulder S, Yakes F, Muthuswamy S, Bianco R, Simpson J, Arteaga C. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 2001; 61: 88878895.
  • 73
    Lane H, Beuvink I, Motoyama A, Daly J, Neve R, Hynes N. ErbB2 potentiates breast tumor proliferation through modulation of p27Kip1-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol Cell Endocrinol. 2000; 20: 32103223.
  • 74
    Arao Y, Yamamoto E, Miyatake N, et al. A synthetic oestrogen antagonist, tamoxifen, inhibits oestrogen-induced transcriptional, but not post-transcriptional, regulation of gene expression. Biochem J. 1996; 313 (Pt 1): 269274.
  • 75
    Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002; 20: 719726.
  • 76
    Kita Y, Tseng J, Horan T, et al. ErbB receptor activation, cell morphology changes, and apoptosis induced by anti-HER2 monoclonal antibodies. Biochem Biophys Res Commun. 1996; 226: 5969.
  • 77
    Kunisue H, Kurebayashi J, Otsuki T, et al. Anti-HER2 antibody enhances the growth inhibitory effect of anti-oestrogen on breast cancer cells expressing both oestrogen receptors and HER2. Br J Cancer. 2000; 82: 4651.
  • 78
    Mayfield S, Vaughn J, Kute T. DNA strand breaks and cell cycle perturbation in Herceptin treated breast cancer cell lines. Breast Cancer Res Treat. 2001; 70: 123129.
  • 79
    Cobleigh M, Vogel C, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999; 17: 26392648.
  • 80
    Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001; 344: 783792.
  • 81
    Normanno N, Campiglio M, De L, et al. Cooperative inhibitory effect of ZD1839 (Iressa) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. Ann Oncol. 2002; 13: 6572.
  • 82
    Dowsett M, Harper-Wynne C, Boeddinghaus I, et al. HER-2 amplification impedes the antiproliferative effects of hormone therapy in estrogen receptor-positive primary breast cancer. Cancer Res. 2001; 61: 84528458.
  • 83
    Kern SE, Kinzler K, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991; 252: 17081711.
  • 84
    Sullivan A, Yuille M, Repellin C, et al. Concomitant inactivation of p53 and Chk2 in breast cancer. Oncogene. 2002; 21: 13161324.
  • 85
    Cho Y, Gorina S, Jeffrey P, Pavletich N. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994; 265: 346355.
  • 86
    Baker S, Markowitz S, Fearon E, Willson J, Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990; 249: 912915.
  • 87
    Kern SE, Peitenpol J, Thiagalingam S, Seymour A, Kinzler K, Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992; 256: 827830.
  • 88
    Keshava C, Frye B, Wolff M, McCanlies E, Weston A. Waf-1 (p21) and p53 polymorphisms in breast cancer. Cancer Epidemiol Biomarkers Prev. 2002; 11: 127130.
  • 89
    Bosari S, Roncalli M, Viale G, Bossi P, Coggi G. p53 immunoreactivity in inflammatory and neoplastic diseases of the uterine cervix. J Pathol. 1993; 169: 425430.
  • 90
    Fabian C, Kamel S, Zalles C, Kimler B. Identification of a chemoprevention cohort from a population of women at high risk for breast cancer. J Cell Biochem. 1996; 25 (Suppl): 112122.
  • 91
    Rohan T, Hartwick W, Miller A, Kandel R. Immunohistochemical detection of c-erbB-2 and p53 in benign breast disease and breast cancer risk. J Natl Cancer Inst. 1998; 90: 12621269.
  • 92
    Levesque M, Yu H, Clark G, Diamandis E. Enzyme-linked immunoabsorbant assay-detected p53 protein accumulation: a prognostic factor in a large breast cancer cohort. J Clin Oncol. 1998; 16: 26412650.
  • 93
    Fabian C, Kimler B, Zalles C, et al. Short-term breast cancer prediction by random periareolar fine-needle aspiration cytology and the Gail risk model. J Natl Cancer Inst. 2000; 92: 12171227.
  • 94
    Yu C-L, Driggers P, Barrera-Hernandez G, Nunez S, Segars J, Cheng S-y. The tumor suppressor p53 is a negative regulator of estrogen receptor signaling pathways. Biochem Biophys Res Commun. 1997; 239: 617620.
  • 95
    Liu G, Schwartz J, Brooks S. Estrogen receptor protects p53 from deactivation by human double minute-2. Cancer Res. 2000; 60: 18101814.
  • 96
    Kato K, Horiuchi S, Takahashi A, et al. Contribution of estrogen receptor α to oncogenic K-Ras-mediated NIH3T3 cell transformation and its implication for escape from senescence by modulating the p53 pathway. J Biol Chem. 2002; 277: 1121711224.
  • 97
    Hurd C, Khattree N, Dinda S, Alban P, Moudgil V. Regulation of tumor suppressor protein, p53 and retinoblastoma, by estrogen and antiestrogens in breast cancer cells. Oncogene. 1997; 15: 991995.
  • 98
    Hurd C, Khattree N, Alban P, et al. Hormonal regulation of the p53 tumor suppressor protein in T47D human breast carcinoma cell line. J Biol Chem. 1995; 270: 2850728510.
  • 99
    Zheng W, Lu JS, Zheng J-M, Hu F-x, Ni C-r. Variation of ER status between primary and metastatic breast cancer and relationship to p53 expression. Steroids. 2001; 66: 905910.
  • 100
    Hori M, Shimazaki J, Inagawa S, Itabashi M, Hori M. Overexpression of MDM2 oncoprotein correlates with possession of estrogen receptor alpha and lack of MDM2 mRNA splice variants in human breast cancer. Breast Cancer Res Treat. 2002; 71: 7784.
  • 101
    Varley J, Evans D, Birch J. Li-Fraumeni syndrome — a molecular and clinical review. Br J Cancer. 1997; 76: 114.
  • 102
    Boyle J, Spreadborough A, Greaves M, Birch J, Scott D. Chromosome instability in fibroblasts derived from Li-Fraumeni syndrome families without TP53 mutations. Br J Cancer. 2000; 83: 11361138.
  • 103
    Boyle J, Spreadborough A, Greaves M, Birch J, Varley J, Scott D. The relationship between radiation-induced G(1) arrest and chromosome aberrations in Li-Fraumeni fibroblasts with or without germline TP53 mutations. Br J Cancer. 2001; 85: 293296.
  • 104
    Welcsh P, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 2001; 10: 705713.
  • 105
    Lee W-H, Boyer T. BRCA1 and BRCA2 in breast cancer. Lancet. 2001; 358: s5.
  • 106
    Struewing JP, Abeliovich D, Peretz T, et al. The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet. 1995; 11: 198200.
  • 107
    Ellisen L, Haber DA. Hereditary breast cancer. Annu Rev Med. 1998; 49: 425436.