• recombinant bispecific antibody;
  • cytotoxic T lymphocyte;
  • epithelial cell adhesion molecule;
  • CD3 receptor;
  • adenocarcinomas;
  • severe-combined immunodeficient tumor model



To redirect cytotoxic T cells to target a broad range of adenocarcinomas, the authors constructed a novel, recombinant, bispecific antibody, E3Bi, directed at the tumor-associated antigen, epithelial cell adhesion molecule (EpCAM), and the CD3 receptor on T cells.


T cells were prepared from healthy blood donors. The cytotoxicity of activated T cells (ATC) redirected to tumor cells by E3Bi was measured with in vitro 51Cr release assays. In vivo studies were performed in a severe combined immunodeficient (SCID)/Beige mouse xenograft model. Tumor-bearing mice were treated with low doses (1 mg/kg) or high doses (10 mg/kg) of E3Bi along with ATC (2 × 109 cells/kg), and treatment efficacy was evaluated both by ex vivo tumor cell survival assay after in vivo treatments and by in vivo tumor growth delay studies.


In vitro, targeting the EpCAM-overexpressing human tumor cell lines with E3Bi increased specific cytotoxicity of ATC by > 70% at an effector-to-target ratio of 2.5 (P < 0.001); this cytotoxicity was abolished competitively in the presence of an anti-EpCAM monoclonal antibody. In contrast, E3Bi did not enhance ATC cytotoxicity toward the low EpCAM-expressing tumor cell line. In ex vivo tumor cytotoxicity assays, a significant reduction in tumor cell survival (40% with low-dose E3Bi; 90% with high-dose E3Bi) was observed in E3Bi/ATC-treated mice compared with control mice that were treated with ATC only. In addition, SCID/Beige mice xenografted with LS174T tumors demonstrated a significant tumor growth delay (P = 0.0139) after receiving E3Bi/ATC/interleukin 2 (IL-2) compared with mice that received ATC/IL-2 alone.


E3Bi specifically and very efficiently redirected T cells to destroy EpCAM-overexpressing tumors both in vitro and in an animal model. These results suggest a therapeutic utility for E3Bi in the treatment of adenocarcinomas. Cancer 2004;100:1095–103. © 2004 American Cancer Society.