• 1
    Deininger M, Goldam J, Melo J. The molecular biology of chronic myeloid leukemia. Blood. 2000; 96: 33433356.
  • 2
    Goldman JM, Melo JV. Chronic myeloid leukemia—advances in biology and new approaches to treatment. N Engl J Med. 2003; 349: 14511464.
  • 3
    Savage DG, Antman KH. Imatinib mesylate—a new oral targeted therapy. N Engl J Med. 2002; 346: 683693.
  • 4
    O'Brien S, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003; 348: 9941004.
  • 5
    Weiserg E, Griffin ID. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in Bcr/Abl-transformed hematopoietic cell lines. Blood. 2000; 95: 34983505.
  • 6
    Gorre M, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by Bcr-Abl gene mutation or amplification. Science. 2001; 293: 876880.
  • 7
    Von Bubnoff N, Peschel C, Duyster J. Resistance of Philadelphia-chromosome positive leukemia towards the kinase inhibitor imatinib (STI571, Glivec): a targeted oncoprotein strikes back. Leukemia. 2003; 17: 829838.
  • 8
    Hochhaus A, Kreil S, Corbin A, et al. Roots of clinical resistance to STI-571 cancer therapy. Science. 2001; 293: 2163.
  • 9
    Druker BJ. Can we cure CML? Blood. 2004; 103: 28652866.
  • 10
    Nimmanapalli R, Bhalla K. Novel targeted therapies for Bcr-Abl positive acute leukemias: beyond STI571. Oncogene. 2002; 21: 85848590.
  • 11
    Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell. 2003; 4: 1318.
  • 12
    Melnick A, Licht JD. Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hemat. 2002; 9: 322332.
  • 13
    Witt O, Sand K, Pekrun A. Butyrate-induced erythroid differentiation of human K562 leukemia cells involves inhibition of ERK and activation of p38 MAP kinase pathways. Blood. 2000; 95: 23912396.
  • 14
    LaMontagne KR, Hannon G, Tonks NK. Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells. Proc Natl Acad Sci U S A. 1998; 95: 1409414099.
  • 15
    Yu C, Rahmani M, Almenara J, et al. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl + human myeloid leukemia cells. Cancer Res. 2003; 63: 21182126.
  • 16
    Nimmanapalli R, Fuino L, Stobaugh C, et al. Cotreatment with the histone deacteylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood. 2003; 101: 32363239.
  • 17
    Nimmanapalli R, Fuino L, Bali P, et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res. 2003; 63: 51265135.
  • 18
    Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP/WAF1. Cancer Res. 2003; 63: 36373645.
  • 19
    Phiel CJ, Zhang F, Huang EY, et al. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001; 276: 3673436741.
  • 20
    Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inducting differentiation of transformed cells. EMBO. 2001; 20: 69696978.
  • 21
    Kramer OH, Zhu P, Ostendorff HP, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003; 22: 34113420.
  • 22
    Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 2004; 64: 10791086.
  • 23
    Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002; 346: 645652.
  • 24
    Mahon FX, Deininger M, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000; 96: 10701079.
  • 25
    Muller M, Morotti A, Ponzetto C. Activation of NF-kB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol Cell Biol. 2002; 22: 10601072.
  • 26
    Carlo-Stella C, Regazzi E, Sammarelli G, et al. Effects of the tyrosine kinase inhibitor AG957 and an anti-fas receptor antibody on CD34+ chronic myelogenous leukemia progenitor cells. Blood. 1999; 93: 39733982.
  • 27
    Jaiswal S, Traver D, Miyamoto T, et al. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci U S A. 2003; 100: 1000210007.
  • 28
    Cirinna M, Trotta R, Salomoni P, et al. Bcl-2 expression restores the leukemogenic potential of a Bcr/Abl mutant defective in transformation. Blood. 2000; 96: 39153921.
  • 29
    Reuther JY, Reuther GW, Cortez D, et al. A requirement for NF-kB activation in Bcr–Abl-mediated transformation. Genes Dev. 1998; 12: 968981.
  • 30
    Kuendgen A, Strupp C, Aivado M, et al. Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood. 2004; 104: 12661269.
  • 31
    Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A. 2004; 101: 540545.
  • 32
    Ichiyama T, Okada K, Lipton JM, et al. Sodium valproate inhibits production of TNF-a and IL-6 and activation of NF-kB. Brain Res. 2000; 857: 246251.
  • 33
    Dai Y, Rahmani M, Dent P, Grant S. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol. 2005; 25: 54295444.
  • 34
    Place RF, Noonan EJ, Giardina C. HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol. 2005; 70: 394406.
  • 35
    Gao N, Dai Y, Rahmani M, et al. Contribution of disruption of the nuclear factor-kappaB pathway to induction of apoptosis in human leukemia cells by histone deacetylase inhibitors and flavopiridol. Mol Pharmacol. 2004; 66: 956963.
  • 36
    Mayo MW, Denlinger CE, Broad RM, Yeung F, Reilly ET, Shi Y, Jones DR. Ineffectiveness of histone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-kappa B through the Akt pathway. J Biol Chem. 2003; 278: 1898018989.
  • 37
    van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized. RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999; 13: 19011928.
  • 38
    Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “real-time” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe Against Cancer program. Leukemia. 2003; 17: 24742486.