SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Zalupski M, Baker LH. Ifosfamide. J Natl Cancer Inst. 1988; 80: 556566.
  • 2
    Van Dyk JJ, Falkson HC, Van der Merwe AM, et al. Unexpected toxicity in patients treated with iphosphamide. Cancer Res. 1972; 32: 921924.
  • 3
    Kerbusch T, de Kraker J, Keizer HJ, et al. Clinical pharmacokinetics and pharmacodynamics of ifosfamide and its metabolites. Clin Pharmacokinet. 2001; 40: 4162.
  • 4
    McCune JS, Risler LJ, Phillips BR, et al. Contribution of CYP3A5 to hepatic and renal ifosfamide N-dechloroethylation. Drug Metab Dispos. 2005; 33: 10741081.
  • 5
    Walker D, Flinois JP, Monkman SC, et al. Identification of the major human hepatic cytochrome P450 involved in activation and N-dechloroethylation of ifosfamide. Biochem Pharmacol. 1994; 47: 11571163.
  • 6
    Huang Z, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol. 2000; 59: 961972.
  • 7
    Granvil CP, Madan A, Sharkawi M, et al. Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes. Drug Metab Dispos. 1999; 27: 533541.
  • 8
    Sladek NE. Metabolism of cyclophosphamide by rat hepatic microsomes. Cancer Res. 1971; 31: 901908.
  • 9
    Sladek NE. Metabolism of oxazaphosphorines. Pharmacol Ther. 1988; 37: 301355.
  • 10
    Brock N, Hilgard P, Peukert M, et al. Basis and new developments in the field of oxazaphosphorines. Cancer Invest. 1988; 6: 513532.
  • 11
    Goren MP, Wright RK, Pratt CB, et al. Dechloroethylation of ifosfamide and neurotoxicity. Lancet. 1986; 2: 12191220.
  • 12
    Ruzicka JA, Ruenitz PC. Cytochrome P-450-mediated N-dechloroethylation of cyclophosphamide and ifosfamide in the rat. Drug Metab Dispos. 1992; 20: 770772.
  • 13
    Kerbusch T, Mathjt RA, Keizer HJ, et al. Population pharmacokinetics and exploratory pharmacodynamics of ifosfamide and metabolites after a 72-h continuous infusion in patients with soft tissue sarcoma. Eur J Clin Pharmacol. 2001; 57: 467477.
  • 14
    Watkins PB, Murray SA, Winkelman LG, et al. Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P-450. Studies in rats and patients. J Clin Invest. 1989; 83: 688697.
  • 15
    Watkins PB. Noninvasive tests of CYP3A enzymes. Pharmacogenetics. 1994; 4: 171184.
  • 16
    Hirth J, Watkins PB, Strawderman M, et al. The effect of an individual's cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res. 2000; 6: 12551258.
  • 17
    Worden FP, Taylor JM, Biermann JS, et al. Randomized phase II evaluation of 6 g/m2 of ifosfamide plus doxorubicin and granulocyte colony-stimulating factor (G-CSF) compared with 12 g/m2 of ifosfamide plus doxorubicin and G-CSF in the treatment of poor-prognosis soft tissue sarcoma. J Clin Oncol. 2005; 23: 105112.
  • 18
    Kurowski V, Wagner T. Comparative pharmacokinetics of ifosfamide, 4hydroxyifosfamide, chloroacetaldehyde, and 2- and 3-dechloroethylifosfamide in patients on fractionated intravenous ifosfamide therapy. Cancer Chemother Pharmacol. 1993; 33: 3642.
  • 19
    Boddy AV, Cole M, Pearson AD, et al. The kinetics of the auto-induction of ifosfamide metabolism during continuous infusion. Cancer Chemother Pharmacol. 1995; 36: 5360.
  • 20
    Kerbusch T, Huitema AD, Ouwerkerk J, et al. Evaluation of the autoinduction of ifosfamide metabolism by a population pharmacokinetic approach using NONMEM. Br J Clin Pharmacol. 2000; 49: 555561.
  • 21
    Watkins PB, Hamilton TA, Annesley TM, et al. The erythromycin breath test as a predictor of cyclosporine blood levels. Clin Pharmacol Ther. 1990; 48: 120129.
    Direct Link:
  • 22
    McCune JS, Hawke RL, LeCluyse EL, et al. In vivo and in vitro induction of human cytochrome P4503A4 by dexamethasone. Clin Pharmacol Ther. 2000; 68: 356366.
    Direct Link:
  • 23
    Singer JM, Hartley JM, Brennan C, et al. The pharmacokinetics and metabolism of ifosfamide during bolus and infusional administration: a randomized cross-over study. Br J Cancer. 1998; 77: 978984.
  • 24
    Kivisto KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br J Clin Pharmacol. 1995; 40: 523530.
  • 25
    Chiou WL, Jeong HY, Wu TC, et al. Use of the erythromycin breath test for in vivo assessments of cytochrome P4503A activity and dosage individualization. Clin Pharmacol Ther. 2001; 70: 305310.
  • 26
    Krecic-Shepard ME, Barnas CR, Slimko J, et al. In vivo comparison of putative probes of CYP3A4/5 activity: erythromycin, dextromethorphan, and verapamil. Clin Pharmacol Ther. 1999; 66: 4050.
    Direct Link:
  • 27
    Kinirons MT, O'Shea D, Kim RB, et al. Failure of erythromycin breath test to correlate with midazolam clearance as a probe of cytochrome P4503A. Clin Pharmacol Ther. 1999; 66: 224231.
    Direct Link:
  • 28
    Lown KS, Thummel KE, Benedict PE, et al. The erythromycin breath test predicts the clearance of midazolam. Clin Pharmacol Ther. 1995; 57: 1624.
    Direct Link:
  • 29
    Mathijssen RH, de Jong FA, van Schaik RH, et al. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J Natl Cancer Inst. 2004; 96: 15851592.
  • 30
    Roy P, Tretyakov O, Wright J, et al. Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer. Drug Metab Dispos. 1999; 27: 13091318.