SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Chow SM, Law SC, Au SK, et al. Changes in clinical presentation, management and outcome in 1348 patients with differentiated thyroid carcinoma: experience in a single institute in Hong Kong, 1960–2000. Clin Oncol. 2003; 15: 329336.
  • 2
    Noguchi S. Differentiated thyroid carcinomas in Japan: our experience and review of the literature. Thyrodol Clin Exp. 1998; 10: 4150.
  • 3
    Pellegriti G, Scollo C, Lumera G, Regalbuto C, Vigneri R, Belfiore A. Clinical behavior and outcome of papillary thyroid cancers smaller than 1.5 cm in diameter: study of 299 cases. J Clin Endocrinol Metab. 2004; 89: 37133720.
  • 4
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417: 949954.
  • 5
    Bloom J, Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol. 13: 4147, 2003.
  • 6
    Hedinger C, Williams ED, Sobin LH. Histological typing of thyroid tumours. International histological classification of tumours. World Health Organization. Vol 11. 2nd ed. Berlin: Springer-Verlag; 1988.
  • 7
    Shah JP, Kian K, Forastiere A, et al. American Joint Committee on Cancer. Cancer staging manual, 6th ed. New York: Springer-Verlag; 2002: 7787.
  • 8
    Rodolico V, Aragona F, Cabibi D, et al. Overexpression of cyclin D1 and interaction between p27Kip1 and tumour thickness predict lymph node metastases occurrence in lower lip squamous cell carcinoma. Oral Oncol. 2005; 41: 268275.
  • 9
    Guo Y, Sklar GN, Borkowski A, Kyprianou N. Loss of the cyclin-dependent kinase inhibitor p27(Kip1) protein in human prostate cancer correlates with tumor grade. Clin Cancer Res. 1997; 3: 22692274.
  • 10
    Yatabe Y, Masuda A, Koshikawa T, et al. p27Kip1 in human lung cancers: differential changes in small cell and non-small cell carcinomas. Cancer Res. 1998; 58: 10421047.
  • 11
    De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol. 1999; 155: 19851992.
  • 12
    Bazan V, La Rocca G, Corsale S, et al. Laser pressure catapulting (LPC): optimization LPC-system and genotyping of colorectal carcinomas. J Cell Physiol. 2005; 202: 503509.
  • 13
    Jarry A, Masson D, Cassagnau E, Parois S, Laboisse C, Denis MG. Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E. Mol Cell Probes. 2004; 18: 349352.
  • 14
    Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003; 63: 14541457.
  • 15
    Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003; 95: 625627.
  • 16
    Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res. 2003; 63: 45614567.
  • 17
    Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab. 2003; 88: 43934397.
  • 18
    Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003; 88: 53995404.
  • 19
    Xing M, Vasko V, Tallini G, et al. BRAF T1796A transversion mutation in various thyroid neoplasms. J Clin Endocrinol Metab. 2004; 89: 13651368.
  • 20
    Puxeddu E, Moretti S, Elisei R, et al. BRAF(V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004; 89: 24142420.
  • 21
    Trovisco V, Soares P, Preto A, et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Arch. 2005; 446: 589595.
  • 22
    Park SY, Park YJ, Lee YJ, et al. Analysis of differential BRAF(V600E) mutational status in multifocal papillary thyroid carcinoma: evidence of independent clonal origin in distinct tumor foci. Cancer. 2006; 107: 18311838.
  • 23
    Oler G, Ebina KN, Michaluart P, Kimura ET, Cerutti J. Investigation of BRAF mutation in a series of papillary thyroid carcinoma and matched lymph node metastasis reveals a new mutation in metastasis. Clin Endocrinol (Oxf). 2005; 62: 509511.
  • 24
    Vasko V, Hu S, Wu G, et al. High prevalence and possible de novo formation of BRAF mutation in metastasized papillary thyroid cancer in lymph nodes. J Clin Endocrinol Metab. 2005; 90: 52655269.
  • 25
    Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005; 12: 245262.
  • 26
    Khoo ML, Freeman JL, Witterick IJ, et al. Underexpression of p27/Kip in thyroid papillary microcarcinomas with gross metastatic disease. Arch Otolaryngol Head Neck Surg. 2002; 128: 253257.
  • 27
    Khoo ML, Beasley NJ, Ezzat S, Freeman JL, Asa SL. Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2002; 87: 18141818.
  • 28
    Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ. The murine gene p27Kip1 is haplo-insufficient for tumour progression. Nature. 1998; 396: 177180.
  • 29
    Bhatt KV, Spofford LS, Aram G, McMullen M, Pumiglia K, Aplin AE. Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene. 2005; 24: 34593471.
  • 30
    Sumimoto H, Hirata K, Yamagata S, et al. Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi. Int J Cancer. 2006; 118: 472476.