SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Estey E,Dohner H. Acute myeloid leukaemia. Lancet. 2006; 368: 18941907. Comment in:Lancet.2007;369:367.
  • 2
    Cheson BD,Bennett JM,Kopecky KJ, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003; 21: 46424649. Erratum in:J Clin Oncol.2004;22:576. LoCocco, Francesco [corrected to Lo-Coco, Francesco].
  • 3
    Kern W,Schnittger S. Monitoring of acute myeloid leukemia by flow cytometry. Curr Oncol Rep. 2003; 5: 405412.
  • 4
    Loken MR,Shah VO,Dattilio KL,Civin CI. Flow cytometric analysis of human bone marrow: I. Normal erythroid development. Blood. 1987; 69: 255263.
  • 5
    Macedo A,Orfao A,Gonzalez M, et al. Immunological detection of blast cell subpopulations in acute myeloblastic leukemia at diagnosis: implications for minimal residual disease studies. Leukemia. 1995; 9: 993998.
  • 6
    San Miguel JF,Martinez A,Macedo A, et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood. 1997; 90: 24652470.
  • 7
    Kern W,Schoch C,Haferlach T,Schnittger S. Monitoring of minimal residual disease in acute myeloid leukemia. Crit Rev Oncol Hematol. 2005; 56: 283309.
  • 8
    Venditti A,Buccisano F,Del Poeta G, et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood. 2000; 96: 39483952.
  • 9
    San Miguel JF,Vidriales MB,Lopez-Berges C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001; 98: 17461751.
  • 10
    Kern W,Danhauser-Riedl S,Ratei R, et al. Detection of minimal residual disease in unselected patients with acute myeloid leukemia using multiparameter flow cytometry to define leukemia-associated immunophenotypes and determine their frequencies in normal bone marrow. Haematologica. 2003; 88: 646653.
  • 11
    Kern W,Voskova D,Schoch C,Hiddemann W,Schnittger S,Haferlach T. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood. 2004; 104: 30783085.
  • 12
    Kern W,Voskova D,Schoch C,Schnittger S,Hiddemann W,Haferlach T. Prognostic impact of early response to induction therapy as assessed by multiparameter flow cytometry in acute myeloid leukemia. Haematologica. 2004; 89: 528540.
  • 13
    Kern W,Haferlach T,Schnittger S,Ludwig WD,Hiddemann W,Schoch C. Karyotype instability between diagnosis and relapse in 117 patients with acute myeloid leukemia: implications for resistance against therapy. Leukemia. 2002; 16: 20842091.
  • 14
    Oelschlagel U,Nowak R,Schaub A, et al. Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry. 2000; 42: 247253.
  • 15
    Macedo A,San Miguel JF,Vidriales MB, et al. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol. 1996; 49: 1518.
  • 16
    Voskova D,Schoch C,Schnittger S,Hiddemann W,Haferlach T,Kern W. Stability of leukemia-associated aberrant immunophenotypes in patients with acute myeloid leukemia between diagnosis and relapse: comparison with cytomorphologic, cytogenetic, and molecular genetic findings. Cytometry B Clin Cytom. 2004; 62: 2538.
  • 17
    Campana D,Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry. 1999; 38: 139152.
  • 18
    Venditti A,Maurillo L,Buccisano F, et al. Pretransplant minimal residual disease level predicts clinical outcome in patients with acute myeloid leukemia receiving high-dose chemotherapy and autologous stem cell transplantation. Leukemia. 2003; 17: 21782182. Erratum in:Leukemia.2004; 18:373. Coco FL [corrected to Lo-Coco F].
  • 19
    Nakamura K,Ogata K,An E,Dan K. Flow cytometric assessment of CD15+CD117+ cells for the detection of minimal residual disease in adult acute myeloid leukaemia. Br J Haematol. 2000; 108: 710716.
  • 20
    Coustan-Smith E,Ribeiro RC,Rubnitz JE, et al. Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol. 2003; 123: 243252.
  • 21
    Kern W,Haferlach T,Schoch C, et al. Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: data from the German AML Cooperative Group (AMLCG) 1992 Trial. Blood. 2003; 101: 6470.
  • 22
    Gianfaldoni G,Mannelli F,Baccini M,Antonioli E,Leoni F,Bosi A. Clearance of leukaemic blasts from peripheral blood during standard induction treatment predicts the bone marrow response in acute myeloid leukaemia: a pilot study. Br J Haematol. 2006; 134: 5457.
  • 23
    Buccisano F,Maurillo L,Gattei V, et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia. 2006; 20: 17831789.
  • 24
    Laane E,Derolf AR,Bjorklund E, et al. The effect of allogeneic stem cell transplantation on outcome in younger acute myeloid leukemia patients with minimal residual disease detected by flow cytometry at the end of post-remission chemotherapy. Haematologica. 2006; 91: 833836.
  • 25
    Feller N,van der Pol MA,Waaijman T, et al. Immunologic purging of autologous peripheral blood stem cell products based on CD34 and CD133 expression can be effectively and safely applied in half of the acute myeloid leukemia patients. Clin Cancer Res. 2005; 11: 47934801.
  • 26
    Sievers EL,Lange BJ,Alonzo TA, et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children's Cancer Group study of 252 patients with acute myeloid leukemia. Blood. 2003; 101: 33983406.
  • 27
    Shah VO,Civin CI,Loken MR. Flow cytometric analysis of human bone marrow. IV. Differential quantitative expression of T-200 common leukocyte antigen during normal hemopoiesis. J Immunol. 1988; 140: 18611867.
  • 28
    Lucio P,Gaipa G,van Lochem EG, et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia. 2001; 15: 11851192.
  • 29
    Kern W,Voskova D,Schnittger S,Schoch C,Hiddemann W,Haferlach T. Four-fold staining including CD45 gating improves the sensitivity of multiparameter flow cytometric assessment of minimal residual disease in patients with acute myeloid leukemia. Hematol J. 2004; 5: 410418.
  • 30
    Evans PA,Short MA,Owen RG, et al. Residual disease detection using fluorescent polymerase chain reaction at 20 weeks of therapy predicts clinical outcome in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998; 16: 36163627.
  • 31
    Takenokuchi M,Yasuda C,Takeuchi K, et al. Quantitative nested reverse transcriptase PCR vs. real-time PCR for measuring AML1/ETO (MTG8) transcripts. Clin Lab Haematol. 2004; 26: 107114.
  • 32
    Viehmann S,Teigler-Schlegel A,Bruch J,Langebrake C,Reinhardt D,Harbott J. Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia. 2003; 17: 11301136.
  • 33
    Leroy H,de Botton S,Grardel-Duflos N, et al. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia. 2005; 19: 367372.
  • 34
    Yoo SJ,Chi HS,Jang S, et al. Quantification of AML1-ETO fusion transcript as a prognostic indicator in acute myeloid leukemia. Haematologica. 2005; 90: 14931501.
  • 35
    Perea G,Lasa A,Aventin A, et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia. 2006; 20: 8794.
  • 36
    Stentoft J,Hokland P,Ostergaard M,Hasle H,Nyvold CG. Minimal residual core binding factor AMLs by real time quantitative PCR-initial response to chemotherapy predicts event free survival and close monitoring of peripheral blood unravels the kinetics of relapse. Leuk Res. 2006; 30: 389395. Comment in:Leuk Res.2006;30:657–658.
  • 37
    Schnittger S,Weisser M,Schoch C,Hiddemann W,Haferlach T,Kern W. New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood. 2003; 102: 27462755.
  • 38
    Marcucci G,Caligiuri MA,Dohner H, et al. Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia. 2001; 15: 10721080.
  • 39
    Weisser M,Haferlach T,Schoch C,Hiddemann W,Schnittger S. The use of housekeeping genes for real-time PCR-based quantification of fusion gene transcripts in acute myeloid leukemia. Leukemia. 2004; 18: 15511553.
  • 40
    Gabert J,Beillard E,van der Velden VH, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003; 17: 23182357.
  • 41
    Gallagher RE,Yeap BY,Bi W, et al. Quantitative real-time RT-PCR analysis of PML-RAR alpha mRNA in acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood. 2003; 101: 25212528.
  • 42
    Mrozek K,Heinonen K,Bloomfield CD. Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001; 14: 1947.
  • 43
    Mandelli F,Diverio D,Avvisati G, et al. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood. 1997; 90: 10141021.
  • 44
    Diverio D,Rossi V,Avvisati G, et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. GIMEMA-AIEOP Multicenter “AIDA” Trial. Blood. 1998; 92: 784789.
  • 45
    Asou N,Kishimoto Y,Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy: the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood. 2007; 110: 5966.
  • 46
    Buonamici S,Ottaviani E,Testoni N, et al. Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood. 2002; 99: 443449.
  • 47
    Guerrasio A,Pilatrino C,De Micheli D, et al. Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia. 2002; 16: 11761181. Comment in:Leukemia.2003;17:650–651; author reply 651–652.
  • 48
    Cassinat B,Zassadowski F,Balitrand N, et al. Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia. 2000; 14: 324328.
  • 49
    Scholl C,Breitinger H,Schlenk RF,Dohner H,Frohling S,Dohner K; AML Study Group Ulm. Development of a real-time RT-PCR assay for the quantification of the most frequent MLL/AF9 fusion types resulting from translocation t(9;11)(p22;q23) in acute myeloid leukemia. Genes Chromosomes Cancer. 2003; 38: 274280.
  • 50
    Weisser M,Kern W,Schoch C,Hiddemann W,Haferlach T,Schnittger S. Risk assessment by monitoring expression levels of partial tandem duplications in the MLL gene in acute myeloid leukemia during therapy. Haematologica. 2005; 90: 881889.
  • 51
    Ostergaard M,Stentoft J,Hokland P. A real-time quantitative RT-PCR assay for monitoring DEK-CAN fusion transcripts arising from translocation t(6;9) in acute myeloid leukemia. Leuk Res. 2004; 28: 12131215.
  • 52
    Schnittger S,Schoch C,Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002; 100: 5966.
  • 53
    Schnittger S,Kinkelin U,Schoch C, et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia. 2000; 14: 796804.
  • 54
    Preudhomme C,Sagot C,Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002; 100: 27172723.
  • 55
    Schnittger S,Schoch C,Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005; 106: 37333739.
  • 56
    Schnittger S,Schoch C,Kern W,Hiddemann W,Haferlach T. FLT3 length mutations as marker for follow-up studies in acute myeloid leukaemia. Acta Haematol. 2004; 112: 6878.
  • 57
    Libura M,Asnafi V,Tu A, et al. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood. 2003; 102: 21982204.
  • 58
    Thiede C,Steudel C,Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002; 99: 43264335.
  • 59
    Schnittger S,Wormann B,Hiddemann W,Griesinger F. Partial tandem duplications of the MLL gene are detectable in peripheral blood and bone marrow of nearly all healthy donors. Blood. 1998; 92: 17281734.
  • 60
    Falini B,Mecucci C,Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005; 352: 254266. Erratum in:N Engl J Med.2005;352:740.
  • 61
    Gorello P,Cazzaniga G,Alberti F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006; 20: 11031108.
  • 62
    Shih LY,Liang DC,Huang CF, et al. AML patients with CEBPalpha mutations mostly retain identical mutant patterns but frequently change in allelic distribution at relapse: a comparative analysis on paired diagnosis and relapse samples. Leukemia. 2006; 20: 604609.
  • 63
    Inoue K,Sugiyama H,Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994; 84: 30713079.
  • 64
    Kreuzer KA,Saborowski A,Lupberger J, et al. Fluorescent 5′-exonuclease assay for the absolute quantification of Wilms' tumour gene (WT1) mRNA: implications for monitoring human leukaemias. Br J Haematol. 2001; 114: 313318.
  • 65
    Weisser M,Kern W,Rauhut S, et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia. 2005; 19: 14161423.
  • 66
    Lapillonne H,Renneville A,Auvrignon A, et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol. 2006; 24: 15071515.
  • 67
    Langabeer SE,Rogers JR,Harrison G, et al. EVI1 expression in acute myeloid leukaemia. Br J Haematol. 2001; 112: 208211.
  • 68
    Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia. 1997; 11: 20222031.
  • 69
    Weisser M,Kern W,Schoch C, et al. Reverse transcriptase-polymerase chain reaction based quantification of the combined MDS-EVI1/EVI1 gene in acute myeloid leukemia. Leuk Lymphoma. 2006; 47: 26452647.
  • 70
    Paydas S,Tanriverdi K,Yavuz S,Disel U,Baslamisli F,Burgut R. PRAME mRNA levels in cases with acute leukemia: clinical importance and future prospects. Am J Hematol. 2005; 79: 257261.
  • 71
    Matsushita M,Yamazaki R,Kawakami Y. Quantitative analysis of PRAME for detection of minimal residual disease in leukemia. Methods Mol Med. 2004; 97: 267275.
  • 72
    Tajeddine N,Millard I,Gailly P,Gala JL. Real-time RT-PCR quantification of PRAME gene expression for monitoring minimal residual disease in acute myeloblastic leukaemia. Clin Chem Lab Med. 2006; 44: 548555.
  • 73
    Bacher U,Schnittger S,Kern W, et al. Acute myeloid leukemia (AML) with t(8;21)(q22;q22) relapsing as AML with t(3;21)(q26;q22). Cancer Genet Cytogenet. 2006; 168: 172174.
  • 74
    Shih LY,Huang CF,Wu JH, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002; 100: 23872392.
  • 75
    Hovland R,Gjertsen BT,Bruserud O. Acute myelogenous leukemia with internal tandem duplication of the Flt3 gene appearing or altering at the time of relapse: a report of 2 cases. Leuk Lymphoma. 2002; 43: 20272029.
  • 76
    Kottaridis PD,Gale RE,Langabeer SE,Frew ME,Bowen DT,Linch DC. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002; 100: 23932398.
  • 77
    Nakano Y,Kiyoi H,Miyawaki S, et al. Molecular evolution of acute myeloid leukaemia in relapse: unstable N-ras and FLT3 genes compared with p53 gene. Br J Haematol. 1999; 104: 659664.
  • 78
    Sanz MA,Martin G,Rayon C, et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARalpha-positive acute promyelocytic leukemia. PETHEMA group. Blood. 1999; 94: 30153021.
  • 79
    Lo Coco F,Diverio D,Avvisati G, et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood. 1999; 94: 22252229.
  • 80
    Krauter J,Gorlich K,Ottmann O, et al. Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias. J Clin Oncol. 2003; 21: 44134422.
  • 81
    Kern W, Schoch C,Haferlach T,Voskova D,Hiddemann W,Schnittger S. Complemental roles for multiparameter flow cytometry and quantitative RT-PCR for the quantification of minimal residual disease in patients with acute myeloid leukemia. Blood. 2003; 102 (Abstract).
  • 82
    Martinelli G,Buonamici S,Visani G, et al. Molecular monitoring of acute myeloid leukemia associated with inv(16): threshold of CBFbeta/MYH11 transcript copy number above which relapse occurs and below which continuous complete remission is likely. Leukemia. 2003; 17: 650651.
  • 83
    Buonamici S,Ottaviani E,Visani G, et al. Patterns of AML1-ETO transcript expression in patients with acute myeloid leukemia and t(8;21) in complete hematologic remission. Haematologica. 2004; 89: 103105.